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1. INTRODUCTION 

In modem society, the electric utilities must supply the customers with 

reliable electricity at nearly constant voltage and frequency without 

interruption of service [1]. Thus the power system security is currently one of 

the most important concerns in the electric utility industry. 

1.1 Power System Security 

The security of a bulk power supply is defined as: "the ability of the bulk 

power system to withstand sudden disturbances such as electric short circuits 

or unanticipated loss of system components" [2]. 

Based on the above definition of power system security, the system must 

be able to meet the load demand in the presence of sudden disturbances. It is 

also necessary that enough reserve generation and transmission capacities 

are available to take up the changes in loading caused by the disturbance, and 

that the control devices are able to return the system to normal operation aftei-

the disturbance. Such "robustness" of the system relative to the credible 

disturbances is at the heart of power system security. 

The current situation in most of the power systems in North America is 

that the continued rise in power demand has reduced the overcapacity of 

generation of a few years ago to minimal level. Problems with construction of" 



www.manaraa.com

2 

new generation facilities means that the electric utility industry may soon 

have much reduced reserve capacity. On the other hand almost every electric 

utility has experienced the difficulties of getting new transmission facilities 

approved and built, resulting in heavier loading of existing transmission 

network. Therefore, the power system is operating closer to its operating limit 

than it was before, and this means that power system security is a growing 

concern. 

The basic requirement of power system security is that, following the 

occurrence of a sudden disturbance, the system can "survive" the ensuing 

transient and move into an acceptable steady-state condition. In this new 

steady-state condition all power system components must be operating within 

established limits. Thus there are two major security problems encountered 

[3]. 

1. Static security 

It deals with whether all power system components are operating 

within established limits. If there are changes in the network, they are 

assumed to have taken place and the new steady-state operating condition 

have been reached. 

The method used for static security analysis is steady-state analysis, 

and the static security includes two components: 

a. Thermal; 

That is the loading of the power system element does not exceed 

the thermal rating. 

b. Voltage: 

The voltage at a given bus is within specified limits. 
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2. Dynamic security 

It deals with the power system in transition, following a disturbance, 

from an initial operating state to another acceptable steady-state condition. 

Therefore, it is often a stability concern. 

Dynamic system performance models and tools are used for dynamic 

security analysis. For a stability-limited system, two problems are usually 

encountered in this analysis: 

a. Small disturbance stability: 

It means that there is no state variable or system parameter 

which increases indefinitely when the power system is subjected 

to a small disturbance. 

b. Large disturbance stability; 

Means that if the power system is subjected to a large 

disturbance, it can "survive" the ensuing transient and reach an 

acceptable steady-state operating condition. 

1.2 Power System Security Assessment 

Security assessment is concerned with the evaluation of available data to 

estimate the present security level of the system. An earlier working 

procedure for static security assessment is presented in [4-6J, in which the 

security of the power system is tested with respect to a set of contingencies. 

The operating state of system is said to be secure if no disturbance in the next 

contingency set would bring about an emergency operating condition, and 
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insecure otherwise. Therefore, security assessment starts with the selection of 

a set of next contingencies, and then the evaluation of the system's response to 

these contingencies. If a contingency caused any violation of system operating 

constraints, security control actions may be employed to steer the system away 

from insecurity. 

In modern system operation, power systems in North America are 

planned and operated in cascading outages prevention mode in accordance 

with the reliability criteria set by their respective reliability councils. These 

criteria specify the type of disturbances which the power system should 

withstand. Therefore, the security assessment process should involve the 

analysis of many possible disturbance scenarios which involve outage of 

credible single or multiple contingencies as anticipated by the operations 

planning engineers. Therefore, it is very important to use faster and more 

efficient techniques in the assessment of system security. By doing this more 

contingency data and results can be processed and consequently, more 

accurate and less conservative operating decisions can be made. 

A brief review of the state-of-the-art of security assessment is as follows: 

1. Static security: 

The methods and theories for contingency selection, external network 

modeling, contingency evaluation and security optimization etc. are available. 

The on-line application of static security assessment and control has been 

implemented in the last decade in modern energy control centers, called 

energy management systems (EMS) [7]. 

2. Dynamic security: 
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Currently the framework of dynamic security assessment used in North 

America is typically as follows:[8] 

a. Off-line studies are performed for different initial operating 

conditions and system configurations, for a prescribed sequence 

of events or contingencies. 

b. From these studies, "safe" operating levels are arrived at for a 

variety of system conditions. 

c. These are often given in terms of limits for the critical system 

operating parameters. 

d. The system is operated such that the critical parameters are 

within those limits. 

1.3 TheNeedfor a New Framework for Assessment of Dynamic Security 

As previously mentioned, today's power systems are operated closcr to 

their limits because of the heavier transmission loadings, increased economic 

interchanges, etc. This has brought dynamic security assessment into sharp 

focus lately, especially for those power systems which are stability-limited. 

There are two issues which need to be resolved for this analysis; 

1. For a stability-limited system off-line studies must be conducted well 

in advance of the actual operating conditions. It has become very 

difficult to provide the operating limits for all possible situations that 

might be encountered. Therefore, dynamic security analysis must be 

conducted much closer to real time than is now possible. 
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2. The framework for power system dynamic security assessment should 

be able to analyze both the current status of security and its trend with 

changing system operating parameters, such as changes caused by 

disturbances, load variations, external changes(e.g., weather) etc.. 

Therefore it is important to study how this security status varies as time 

progresses. 

It is generally recognized that the tools of stability analysis presently 

used in off-line studies, and the current framework for dynamic security 

assessment are not capable of meeting the needs outlined above. The interest, 

therefore, has focused on new tools of analysis, which have the potential of 

meeting the above needs; and a new framework for assessing power system 

dynamic security. 

Regarding the tools of stability analysis, current research work is 

focused on the transient energy function (TEF) method that determines 

transient stability without solving the system dynamic equations [9j. This 

method has the potential for conducting stability analysis, to determine 

transient stability limits, faster than existing tools. It is also capable of 

providing information on the degree of stability and instability, and can give 

information on the sensitivity of the energy margin to changes in system 

parameters or operating conditions. This method has been developed to the 

point that tests on large-scale systems have been successfully conducted. 

The new framework for dynamic security assessment is presented 

through the concept of system vulnerability, which is the focus of the research 

presented in this dissertation. 
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One thing that should be kept in mind is the increasing need for 

dynamic security analysis. This is because of the power system's increased 

size, interconnection between systems, more new control devices and heavier 

loading of the transmission network make the operators encounter more 

complex situations. Recent research, as well as recent IEEE forums identified 

the need for a new framework for security trend analysis. The operators need 

to know, not only that the system is secure at the present time, but also wish to 

know what may happen in the future, i.e., how the system security is affected 

by changes in system conditions and what kind of remedial action can be 

applied. These industry demands for security analysis are the motivation of 

our research work. The requirements for this new dynamic security 

assessment framework should include: 

1. For a given system, dynamic security analysis should deal with both 

the level of the indicators) of dynamic security and their trend with 

changing system conditions. 

2. This framework should be available for on-line security assessment. 

3. It should be able to provide fast, accurate and reliable assessment. 

The above are incorporated in the concept of system vulnerability, which 

is the focus of the research presented in this dissertation. 

1.4 Concept of System Vulnerability 

Power system vulnerability is a new concept used to assess the power 

system dynamic security. It measures the rate of deterioration in systcMii 
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security. This concept includes two indicators of system security: 1) the level of 

security, and 2) how that level is changing with changing system conditions or 

parameters. The concept was first suggested in the EPRI report No. EL-6796 

[10]. At about the same time an IEEE forum [11] on power system security 

assessment came out with the conclusion that "Security Index should deal 

with changes in actual system parameters or conditions. It should help the 

system operator detect the "softness" in his system." 

The following graphs are used for illustrating the idea of vulnerability. 

When the transient energy function is used as the tool for security analysis, 

the energy margin AV will indicate the level of security. 

AV 
AV 

P 
AP AP 

(a) 

Figure 1.1 Energy Margin Sensitivities - System Vulnerability 

From Figures 1.1 a and b it is clear that, for the same original operating 

condition the value of a critical parameter p is p® ; regime #1 appears to be 

more secure than regime #2 since AV^ > AV2. However, for the same amount 

of change in the parameter p, which is Ap, regime #1 is more vulnerable to the 
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changes in p because of the high sensitivity of the energy margin. Figure 1.1 

indicates that A(AVi) is much larger than ACAVa) . Therefore the system 

vulnerability should include both the levels of AV and its sensitivity OAV/Dp . 

1.5 Scope of This Research Work 

The scope of this research work includes the following: 

1. Use the transient energy function(TEF) method to develop a framework 

for system vulnerability. The new framework can indicate both the 

present security level using the energy margin AV, and the trend of 

security status due to the possible variation of a system operating 

parameter p using the energy margin sensitivity dAY/dp. Therefoi e, 

this framework can identify the weakest point in the system, and how 

the changes of the parameter will cause the system to become 

vulnerable. 

2. Establish thresholds for acceptable levels of AV and DAV/Bp ; and relate 

these thresholds to stability limits of critical system parameters. 

3. Develop a procedure for security and vulnerability assessment. 

4. Apply artificial neural networks(ANNs) in TEF method for fast pattern 

recognition and classification of security status for on-line analysis. 

TEF is a very powerful method for evaluating system security and it is 

easy to apply the sensitivity technique in this method. The detailed analysis of 

TEF and its sensitivity technique are introduced in Chapter 2. The framework 

and procedure for vulnerability assessment are introduced in Chapter .3, and 

applied to a test system in Chapter 4. 
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The reason of applying ANNs technique in dynamic security 

assessment is that it has been successfully used for classification of complex 

systems. We can predict that a TEF-ANN method which could improve on-line 

security and vulnerability assessment would be welcome in a power system 

control center. The basic theory and the application of ANNs are discussed in 

Chapter 5. 

From dynamic security point of view there are several critical 

parameters which may be of concern such as plant generation, system 

configuration, transmission interface power flow, etc.. In this research work, 

we first consider the variation of plant generation to build our security and 

vulnerability framework. The same idea could be extended to cover the efTect of 

other parameters on system dynamic security. 
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2. TOOLS FOR SECURITY AND VULNERABILITY ANALYSIS 

FOR A STABIUTY-LIMITED POWER SYSTEM 

There are basically two methods for power system transient stability 

analysis: the time domain simulation method and the transient energy 

function method. Therefore, a stability-limited power system will depend on 

one or both of these methods for security and vulnerability analysis. The 

following is a review of those two methods. 

2.1 Time Domain Simulation Method 

Time domain simulation is the conventional, and standard, method for 

transient stability analysis. Transient stability studies are intended to 

determine if the system will remain in synchronism following major 

disturbances such as transmission system faults, sudden large load changes, 

loss of generating units, or switching of a loaded line. In all stability studios, 

the objective is to determine whether or not the machines being perturbed 

return to acceptable steady-state operation. In this time domain simulation 

method, nonlinear differential and algebraic equations are used for modelling 

the power system, and these nonlinear equations are solved by iterative step-by-

step procedures to evaluate the system stability for a variety of operating 
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conditions, system configurations etc.. From these calculations, transient 

stability limits are computed [12]. 

The advantage of this method is that we can obtain the profile of different 

variables as the time progresses. Thus, we can obtain a lot of information 

from these variables. In addition, it has no modelling limitations. 

The disadvantages of this method are: first the speed of calculation is 

slow because it needs step by step integration. Second, this method can only 

tell us whether the system is stable or not, but can not give qualitative 

information on the degree of stability. In order to compute the stability limit 

for a given contingency we must run the program several times. Thus, it is 

very time consuming. Another disadvantage of this method is that it can not 

give the information on sensitivity to system parameters. 

On the basis of above analysis, this method is not considered suitable for 

on-line dynamic security analysis and the contingency ranking. 

2J2 Transient Energy Function IVfethod (TEF Method) 

2.2.1 Introduction 

Since 1980 research work on the TEF method has made considerable 

progress. This method is based on the Lyapunov's theory. It evaluates the 

power system stability problem from a system energy point of view. The 

principal idea of this method is based on the following concept. If the rale of 

change of the energy E(x) of an isolated physical system is negative for every 

possible state z. except for a single equilibrium state jcg, then the energy will 
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continually decrease until it finally assumes its minimum value E(xe)- I" 1892 

Lyapunov showed that certain other functions could be used instead of energy 

to determine stability of the equilibrium point. The above concept was 

developed into a precise mathematical tool by Lyapunov, that is the Lyapunov's 

second method [13]. The basic concept of this method can be explained by the 

the following example. 

UEP 

a 

Figure 2.1 An Example of System Stability 

In Figure 2.1 originally the ball is in the stable equilibrium position 

which is represented by the stable equilibrium point (SEP) a. The ball is 

disturbed by a sudden sharp push, forcing it to move. At some point the ball is 

in the position b with the velocity v. If the mass of the ball is m then the kinetic 

energy is 

and the potential energy is 
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Vp = mgh 

therefore the total energy is V = Vk + Vp , that is 

V = 1 mv2 + mgh 

When the ball is in the position c with v = 0, the potential energy is mgH. Wc 

define this point c to be the unstable equilibrium point (UEP) and the 

corresponding potential energy is the critical energy. That is 

Vcr = mgH 

which is also the maximum potential energy for the ball. It is clear that if the 

the disturbance is large enough such that V > Vcn the ball will go over the 

point c and can not go back to point a, which means the system is unstable. If 

V < Vcr then the ball will go back toward the SEP and the system is stable. If 

there is damping (e.g., due to friction), the ball will eventually settle at the SEP. 

2.2.2 The transient energy function [9] 

There are two key points in applying the TEF method to a power system. 

The first one is finding the transient energy tending to separate one or more 

generators from the rest of the system. The second one is calculating a cntical 

value of the transient energy against which transient stability assessment is 

made. This critical energy is the potential energy at the controlling UEP, for 

the particular disturbance under investigation. The UEP is a solution of the 

steady-state system equation with certain generators' angles generally greater 

than 7i/2, we call these generators advanced or critical machines. The 
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potential energy at the UEP represents the power network's ability to "absorb" 

all the transient energy at the end of the disturbance. It is not an easy task to 

find the controlling UEP because for a n generator system there are 2"-^ -1 

UEPs. Different UEPs have different advanced machines, thus different UEPs 

have different potential energies and only one of them can give the correct 

critical energy. This UEP is the so-called controlling UEP. Recent research 

work [9] has shown that the controlling UEP is in the direction of the disturbed 

system trajectory; its identity depends on both the disturbance itself and the 

post-disturbance network. Therefore the determination of the controlling UEP 

is among the key steps in stability assessment. 

The mathematical statement of the controlling UEP is that: if Xg is the 

point where the unstable system trajectory crosses the stability boundary, then 

the controlling UEP is the UEP that Xg lies on its stable manifold. 

Determination of the controlling UEP involves: 1). identification of the severely 

disturbed generators, i.e., the critical generators, and 2). solving for the 

specific equilibrium point in which the angles of the critical generators are 

greater than 90®. Two procedures are used in determining the critical 

generators in the controlling UEP [9]: the MOD procedure, and the exit point 

method. 

The MOD procedure is applied to a set of candidate UEPs in the direction 

of the system trajectory. The controlling UEP is that with the lowest 

normalized potential energy margin at the instance the disturbance is 

removed. In the exit point method two steps are involved: (1) the first potential 

energy maximum on the faulted system trajectory, called the exit point, is 



www.manaraa.com

16 

determined, and (2) from the exit point the associated gradient system is 

integrated until its minimum is found. 

The controlling UEP is solved for at a point on the Potential Energy 

Boundary Surface (PEBS) near the desired UEP. hi the MOD procedure, the 

UEP solution is started at the so-called ray point [9]. In the exit point method, 

the UEP solution is started at the minimum gradient point. 

The advantages of the TEF method can be characterized by its ability to: 

(1) give qualitative measurement of the degree of system stability, (2) identify 

the critical generators which are severely affected by the disturbance, (3) ho 

adapted for sensitivity analysis, and (4) achieve faster computation of stability 

limits. Thus it is a powerful method for fast security assessment and can be 

used for on-line security assessment or as a screening tool for off-line analysis. 

2.2.3 The mathematical model 

For the classical power system model the equations of motion of the 

synchronous generators, written with respect to an arbitrary synchronous 

frame, are given by 

Mjft^ = Pj - Pei 

ôi = a>i i=l,2,...,n (2.1) 

where n is the number of generators. 
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P« =X [Cij(sin(5i-Sj) + Dy(cos(ôi-2^)] 
i=l 
jfl 

Pi = Pm|-Ei%ii 

Cy=EiEiBij Dy = EiI^G,j 

and, for the i-th generator, 

Pmi the mechanical input power 

^'j the real part of ij-th element of internal node reduced bus admittance 

matrix 

®'j the imaginary part of ij-th element of internal node reduced bus 

admittance matrix 

Ei the machine's internal constant voltage source behind transient 

reactance 

Mi the inertia constant of i-th machine 

û)i,ôi generator speed and angle respectively. 

Transformation of equation (2.1) into the center of inertia (COI) 

coordinates is done by defining the position of the center of inertia by the 

equations 

80 = rj- X 
(2.2) 
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where 

Mt = % Mi 
i=l 

The COI motion is defined by the equations 

MtoJO = 2 (^i " ^ei) 
i=l 

= Z Pi - 2% Z DijCosSij = Pcoi 
i=i i=i j=d+i (2.3) 

00 = 0)0 i=l,2,...,n 

We define the generators' angles and speeds relative to the COI by 

01 = ôi-ôo û^ = ôi-So i=l,2,...,n 

The system equations of motion become 

MiWi = Pi - Pei" ̂  Pcoi 

8i = (4 i=l,2,...,n (2.4) 
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The transient energy function V is defined for the post-disturbance 

system. It can be derived from the n acceleration equations in the COI frame 

of reference as shown in equation (2.4). It is given as follows 

i=l i=l 

n-1 n 

V = ly MiO?-y Pi(0i-0f) -L Z Cij(cos0ij-cos0ij)-) DijCOseijd(ei+0j) 
i=l >4+1 •- ^ 

(2.5) 

The physical meaning of each term of the transient energy function can 

be interpreted as follows: 

The first term is the total change in kinetic energy of all generators 

relative to the COI. Which is 

ji Mm' 

The remaining parts of the energy function are the total change of the potential 

energy, it consists of three parts: 

-£Pi(0i-0f) 
• i=l 

is the change in position energy of all rotors relative to the COI. 

• Cij(cos0ij-cos0ij) 

is the change in the stored magnetic energy of branch ij. 
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^.^.Dijcoseijd(0i+0j) 

is the change in the dissipation energy of branch ij. An approximation of this 

term is used to avoid calculating the actual system trajectory. It is defined as 

Using the COI framework to derive the energy function the result will be 

more accurate. This is because it eliminates the energy components 

contributing to the motion of COI and not affecting the stability of the system. 

It was also found that not all the transient kinetic energy contributes to 

the separation of the critical generators from the rest of the system. The 

corrected kinetic energy is that of two equivalent groups of generators; the 

critical group and the rest of the generators. It is given by 

^,^.DijCOS0ijd(0i+0j) 

where 

0i+0j-0r0f 

' 8u-8ij 
<sin0ij-sin0ij) 

VKE Icon- = ^ Meq(câeq)^ 
(2.6) 
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where 

^eq — Mcr*Msys/(Mcr M^g) 

(i)gq = Olcr * Û^sys 

cr ; index set of critical generators 

sys ; index set of non-critical generators 

Therefore the first term in (2.5) should be replaced by (2.6). 

2.2.4 Transient stability assessment 

Transient stability assessment using the TEF method is made by 

computing the energy margin AV given by 

AV= Vcr-Vci 

where Vd is the value of V at fault clearing, and Vcr is the potential energy at 

the controlling unstable equilibrium point (UEP). Thus, the energy margin is 

given as follows: 

AV = -lMeq(œâ,)^-XPi(ei'-e-VX f [Cy(cos0ij-cos0y)-lijlo"' 
i=l i=l j=i+l (2.7 ) 

where 
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lij 1 e'' ~ —^-^r-^sin0ii-sin0^') 
W 

of the clearing angle of i-th machine rotor in COI reference frame 

Gi" the controlling UEP angle of i-th machine rotor in COI reference 

frame 

Thus the transient stability (or instability) is determined by whether AY 

is great or less than zero. AV > 0 means the system is stable for the given 

contingency while AV < 0 means system is unstable. 

2  ̂ Sensitivity Analysis of the Transient Energy Function Method 

There have been various research efforts on the application of sensitivity 

analysis based on the TEF method. The researchers who made significant 

contribution in this area are Bauer, El-kady , Fouad, Vittal , and Pai etc. [14], 

[15], [16],[17], [18], [19]. Taking the changing parameter to be the generation 

and using the first order sensitivity technique, the variation of energy margin 

caused from generation changes can be approximated as 

M m  s 2 ̂ APmk 
k=l (2.8) 

The energy margin is a function of the clearing angles, clearinj^ 

speeds, UEP angles, and the voltages behind transient reactance. Thus, the 
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sensitivity of the energy margin with respect to the generation shift at the k-th 

mach ine  i s  g iven  by  the  pa r t i a l  de r iva t ive  o f  AV wi th  r e spec t  t o  P n i k -

Differentiating equation (2.7) by using the chain rule of differentiation, we get 

9AV _ ~d ,;d 
ap, 

= - (Gk-Gk') -I Pi(u&-4) 
mk i=i 

+ X S cjsineij(u^.i^) - sin0jVu^-uj|)] 
1=1 j=i+l 

i=i j^+1 ej-0ij 

ef'-ef ) ^ 

+ 2i5fi-EiGa(0j-e5') 
i=l °^mk 

n-1 n ûF^ 

+  Z  Ë  — — ^  D i j C c o s G i j C u i ' j ^ . U j ' j ^ )  -  c o s G i j  ( u ^ - u j j ^ ) ]  
i=l >4+1 9y-9y 

-X i (#-Ej-H5p-Ei)Bii(cosCcosei?) 
j_ j=i+l ""mk ormk 

+ X i K^Ej f (sine,; - sinseg)! 
W j=i+l 3Pmk dPmk 6^-8# 

(2.9) 
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where 

^ieq,k — licr,k " Ûsys.k 

iecr 

the variables introduced in the above equations are defined as follows 

Clearing anple sensitivity coefficient 

Uil= 
aPmk 

UEP angle sensitivity coeffigient 

aPmk 

Clearing sneed sensitivity coefficient 
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2.4 Using TEF Method for Security and Vulnerabiliiy Analysis 

Because of the continued developments, the TEF method is now capable 

of providing accurate and reliable stability assessment. Therefore, in a 

stability-limited power system we use TEF method as the tool for security and 

vulnerability analysis. When the TEF method is used for this study the energy 

margin AV will be the indicator of the security status. Therefore AV > 0 means 

that the system is stable for the given contingency while AV < 0 means that the 

system is unstable. 

When we are concerned with the system vulnerability the change of the 

security status with respect to a change in a system parameter p is also of 

interest. The tool for security trend analysis is the sensitivity of energy margin 

8AV/9p By using the sensitivity technique, we can determine which 

parameter has the significant influence on system security. It also provides a 

fast way to know the new system security status. The purpose of our research 

work is to incorporate the information of energy margin and the sensitivity of 

energy margin with changing system parameter to build a framework for 

system vulnerability assessment. The basic ideas and the procedure of this 

framework are discussed in Chapter 3. 
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3. FRAMEWORK AND PROCEDURE FOR SECURITY & 

VULNERABILITY ASSESSMENT 

3.1 Basic Idea of this Framework 

The proposed framework for assessing the system vulnerability includes 

two basic ideas: 

1. The first idea in this framework is combining the energy margin A V  and 

the sensitivity 9AV/9p to evaluate the vulnerability status. A low value of 

AV with a high value of 9AV/9p means that the system is vulnerable for 

changing the parameter p. Therefore, if we can divide AV and 9AV/^p 

into high and low level classes, that is 

• V _( High level . 9^ High level 
AV-l Low level ' ̂  9p Low level 

then the system vulnerability can be determined from these levels. For 

example, if security assessment results in the following combination of 

AV and 9AV/9p: 

AV= Low level 

and 
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= High level 
ap 

then the system is vulnerable for this contingency. Therefore, the 

choice of the levels of the thresholds determines the system 

vulnerability. Within this framework, we must address the question of 

how to determine the thresholds which separate the high and low levels 

for AV and 3AV/9p. 

2. The second idea is to correlate the levels of AV and 3AV/3p with the 

stability limits of the critical system parameters. Since all the system 

parameters should be operated within their stability limits, the 

correlation of the levels of AV and 9AV/9p with those limits is very 

important for evaluating the trend of security status. 

3.2 Procedure of Security and Vulnerability Assessment 

The procedure is illustrated for changes in generation P, and the 

following assumptions are made: 

• Only three phase fault contingencies are considered. 

• The mode of instability, i.e., the identity of the most disturbed 

generators, does not change when there is a generation shift. 

• The total system generation is constant. 

• The sensitivity of energy margin with respect to generation 

change are available[18]. 

We have emphasized that the key point in this framework is to find the 

thresholds which separate the high and lower levels for AV and f)AV/f)p and 
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those thresholds should be connected with the stability limits of those critical 

system operating parameters. Therefore the procedure of security and 

vulnerability assessment will consist of two steps: the first one is finding the 

security domain of each system parameter, and the second one is determining 

the thresholds of AV and 9AV/9p based on the security domains of those 

parameters. 

In order to explain this procedure clearly we first assume that there are 

m contingencies but only the change in generation P is of concern, then the 

energy margin values corresponding to the original operating point P° are: 

AV =<AVi.AV2 AV° ) 

We also assume that the sensitivity of energy margin has the linearized 

characteristics. Therefore we can obtain the following graph (Figure 3.1 ). 

AAV 

Figure 3.1 Energy Margin vs. Plant Generation 
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Figure 3.1 shows that at the initial operating point Po the energy margin 

of those m fault locations are AVi,AV2,...,AVm. It also shows that they have 

different sensitivity values, that is their slopes are different. If we increase P, 

all the energy margin values will decrease. The rate of change of the energy 

margin depends on their sensitivity values. Therefore by using the equation 

^^AP+AVj'=0 
a? 

we can find the smallest increment of P, which is AP'"'", that will cause a 

certain energy margin AV; to first become zero (it should be kept in mind that 

the largest aAVj/aP will not necessarily correspond to the AP'"'"). The stability 

limit of P will then be given by 

pmax_po^^pmin 

Since in practical situations P can not be operated at point pmax 

security domain of P should be P < otP"^®*, where a depends on the prevailing 

utility's policy, typically 0 < a< 1. Now, we can check whether P° is greater or 

less than aP*"®*. If P° is greater than aP*^®*, this means that the system is 

vulnerable to the change in this parameter P. Therefore, the energy margin 

value AV®, which would be obtained if the initial power P° is equal to (as 

shown in Fig. 3.1). The sensitivity value aAVi/BP corresponding to the AV^ will 

be used to determine the thresholds of AV and ^AV/BP, 
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On the basis of the above analysis, if there are m contingencies and if the 

changes in the powers of n generators are of concern, then we have the 

following energy margin and sensitivity values: 

AV =(A\^,AV2....,AV° ) (3.1) 

8AV 
ap 

AAVI BAVZ 8AV, 
aPi api 

m 

ap, 

aAVi BAVz BAVn 

aPn aPn aPn (3.2) 

and the operating point is 

P0=[P°,P5,...P°] (3.3) 

The procedure of the security and vulnerability assessment involves the 

following steps: 

1. Finding the security domain for each generation change, 

2. determining the thresholds of the energy margin and its sensitivity, and 

3. for the selected set of contingencies classifying AV and aAV/DP, and 

evaluating the system vulnerability situation. 

Detailed procedure is explained in the following subsections. 
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3.2.1. Secxirity domain for each parameter 

Each row in the sensitivity matrix (3.2) corresponding to the sensitivity 

of the energy margins AVi with respect to the change in the power of 

the jth generator. Therefore, the procedure of defining the security domain is 

as follows: 

a. For each row of (3.2), and using the equation 

?^APj+AV?=0 
i=l,2,...m (3.4) 

which is the smallest generation change which causes 

the new energy margin to become to zero, is calculated. 

Pj", which is the stability limit of Pj, is calculated using 

Pf=P9+APf" j=l,2....n (3.5) 

c. The security domain of Pj is defined as Here a is chosen 

according to the established utility policy. Then is used to 

check the security of the original operating point in (3.3). If 

P? > aPf , j=l,2,...n 

then the corresponding jth generator is operating in the 

vulnerable domain. 



www.manaraa.com

32 

3.2.2. Thresholds of energy margin and its sensitivity 

The thresholds of AV and 9AV/9P can now be defined as follows; 

a. We check each Pj* and pick up those for which Pj - . 

Assume there are k such values of Pj. Corresponding to each 

value of Pj there is a sensitivity value, which corresponds to 

P-=p;'+APf". That is: 

?^APf"+AVf=0 
(3.6) 

b. For those k values of Pj with Pj - ®Pj", by using the sensitivity 

value defined in step a, we can calculate the energy margin 

which would be obtained if the initial power Pj" is equal to ®Pi' 

That is: 

9AV-
^^l-a)P5"+AV?=0 
^Pj j=l,2,...,n. (3.7) 

c. By repeating steps a and b for j=l,...,n, we can obtain those k 

values of 3AV/9P and which correspond to those k 

generators with Pj - k< n. 

d. The maximum of those k values of AVf is taken as the AV 

threshold. That is: 

Jill 

S^Y = max|AV?,, AV-j AV-t) (3.8) 
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All values of AV lower than Sav are considered low level. 

The smallest magnitude of those k values of 3AV/3P is taken as 

the sensitivity threshold. That is: 

^AV/AP -
8AVii aAVi2 3AVik 

3Pji 3Pj2 3Pjk (3.9) 

All values of 3AV/9P higher than ^AV/APare considered high level. 

It is clear that by choosing the thresholds in this way it includes all the 

Pj > aPj" cases. 

It should be mentioned here that for the threshold of energy margin 

sensitivity we need to consider the negative and positive sign sensitivities 

separately since they will make the security status move toward opposite 

directions. We will also find out in the next chapter that the negative sign 

sensitivity are mainly of concern from the system vulnerability point of view. 

3.2.3 System vulnerability assessment 

The thresholds obtained form (3.8) and (3.9) are used to divide the AV 

and 9AV/9P values in equations (3.1) and (3.2) into high and low level 

categories. Then if for any contingency AV belongs to the low level class and 

the sensitivity values of some generators belong to the high level class, then wo 

know that the system is vulnerable for this contingency if there arc the 

generation shift at the corresponding generators. 

The above analysis indicates that the system vulnerability is determined 

by incorporating the information of AV and 5AV/0P , and the levels of AV and 
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9AV/8P are correlated with the stability limits of the generation. The physical 

meaning is that a low AV value means for the corresponding contingency the 

system is close to its stability limit. If at the same time, the values of dAV/dP of 

some generators belong to the high level, the AV value will be greatly reduced 

if there are generation change at these machines. This means that the system 

will go toward its stability limit very quickly and will tend to become unstable. 

Therefore, the above procedure is a proper evaluation of both the system 

security status at the present operating condition and the trend of this security 

status by changing the system parameter. 

In Chapter 4 we apply this framework to a test power system and 

evaluate its security status for different operating conditions. 
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4. APPLICATION TO A TEST SYSTEM 

4.1 Test Syston Description 

The test system used for this study is the IEEE 50-generator test system. 

This system is characterized by large blocks of generation delivered from 

power stations nos. A and B through 500 kv and 230 kv transmission networks 

[20]. Figure 4.1 is a one line diagram of the network in the area of power 

stations nos. A and B. 

For this system its security and vulnerability status were evaluated for 

two system operating conditions: a base unstressed case and a stressed case. 

33 14 

,p'; Q. 
Figure 4.1 IEEE 50 Generator System - Power Stations A & B Area 
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The base case power flow is characterized by setting the generation at 

generators 9 and 25 to be 700 MW each, while the stressed case power flow is 

characterized by setting the generation at generators 9 and 25 to be 1300 MW 

each. The generation at station B is held at 4000 MW for both cases. In the 

following sections all the faults are three-phase faults and the fault clearing 

time is fixed at 0.108 second. 

Nine fault buses were chosen to evaluate the system security status; they 

are buses numbered 7,6,12,1,2,10,25,61, and 63. The AV values corresponding 

to these nine faults and the 3AV/ap values of the advanced generators are 

calculated for both base-case and stressed-case operating conditions. The 

detailed results of assessing the system vulnerability are shown in the 

following sections. 

4J2 Base Case Security and Vulnerability Assessment 

For the base case operating condition, the AV values corresponding to 

these nine contingencies and the 3AV/9P values of 28 advanced generators are 

calculated using the EPRI program Direct version 3.0. The results are shown 

in Table 4.1. 

Table 4.1 Energy Margin Values (base case) 

Bus No. 7 6 12 1 2 10 25 61 63 

AV 0.4599 2.2758 27.648 31.722 31.838 31.176 30.388 35.702 36.189 
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From Table 4.1 we know that the energy margin values are quite small 

for faults at buses 7 and 6, while the energy margin values for the rest of 

contingencies are quite large. This means the security status for faults at 

buses 7 and 6 are close to the stability Umits. 

For the disturbances investigated up to 28 generators may be considered 

severely disturbed. The sensitivity matrix for the 28 generators of interest are 

shown in Table 4.2. By analyzing the data in this table two things are observed. 

The first is that the negative sensitivity values are mainly of concern from the 

system vulnerability point of view because most of the elements have negative 

sign and many of them have significant magnitudes. This means that if we 

increase the generation at the corresponding machines the AV value will 

decrease rapidly. The second observation is that for faults at buses 7 and 6 only 

generators 20 and 26 have large negative sensitivities. 

4.2.1 Security domain for the critical generators 

Based on the procedure proposed in Chapter 3, the first step of 

vulnerability assessment is to define the security domain of the generation for 

each critical machine. Using the above data in Tables 4.1 and 4.2, the result of 

finding the security domain is shown in Table 4.3. 

In Table 4.3 the first column is the critical machine numbers, and the 

second column is the initial generation P°. The third column is the stability 

limits of those critical generators as calculated by equations (3.4) and 

(3.5). The fourth column is the values of which are the security domain 

of those advanced machines. The fifth and sixth columns are the sensitivity 

values and AV® values corresponding to equation (3.7); they will be used for 
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Table 4.2 Energy Margin Sensitivity Values {Base Case) 

G e n \ B u s  7  6 12 1 2  10 25 6 1  63 

2  0 ,  .3142 0  .2847 -1 .7863 -1 .7894 - 1  . 7 8 9 4  -1 .7664 -1 . 7 7 1 8  -1 .8048 - 1  .8224 
3 0 ,  .2936 0  .2512 - 1  . 3 1 7 1  - 1  . 2 7 1 1  - 1  . 2 7 1 8  - 1  .2790 -1 .2830 - 1  . 2 5 9 2  - 1  .2645 
4  0 .  .2942 0  . 2 5 7 2  - 1  . 3 0 8 0  - 1  . 2 7 1 4  - 1  . 2 7 1 3  - 1  .2751 - 1  .2786 - 1  .2618 -1 , 2 6 7 7  
5 0. .3400 0  . 3 3 0 0  - 1  . 7 9 1 1  - 1  . 7 3 4 6  - 1  . 7 3 5 5  - 1  . 7 7 8 2  -1 . 8 0 4 3  - 1  . 7 5 9 9  -1 . 7 7 3 4  
6 0 .  ,5050 0  . 4 2 4 4  - 2  . 5 3 8 3  - 2  . 5 2 5 3  - 2  . 5 2 4 3  - 2  . 4 4 5 1  - 2  . 4 6 6 6  - 2  .4306 - 2  .4322 
7 0 .  2 0 3 1  0  . 1 9 4 3  - 0  . 8 5 4 8  - 0  . 8 4 5 8  - 0  . 8 4 6 0  - 0  . 8 5 3 5  - 0  . 8 4 8 3  - 0  . 8 6 6 8  - 0  . 8 7 7 6  
8  0. 3 6 9 2  0  . 2 9 5 5  - 2  . 0 4 1 7  - 1  . 9 2 9 1  -1 . 9 2 9 2  - 1  . 9 8 4 3  - 2  . 0 5 1 0  -1 . 9 1 5 9  - 1  . 9 2 5 4  
9  0 .  4 0 6 4  0  . 4 1 7 3  - 1  . 8 7 7 7  - 1  . 9 8 1 1  -1 , 9 8 0 0  - 1  . 8 4 4 7  -1 , 8 5 7 5  - 1  . 9 0 9 8  - 1  .9263 
10 0 .  1 5 7 7  0  . 1 5 4 1  - 0  . 6 3 5 1  - 0  . 6 2 8 0  - 0  . 6 2 8 3  - 0  . 6 4 0 8  - 0  . 6 3 4 5  - 0  . 6 5 4 8  - 0  . 6 6 5 0  
1 1  0 .  1 1 8 3  0  . 1 1 4 5  - 0  . 3 7 2 8  - 0  . 3 5 7 1  - 0  . 3 5 7 5  - 0  . 3 8 3 1  - 0  , 3 7 5 8  - 0  . 3 8 7 8  - 0  .3942 
1 2  0 .  4 4 0 6  0  . 3 7 4 4  - 2  . 0 3 4 7  -1 . 9 5 9 6  - 1  . 9 7 5 5  - 1  . 9 7 8 9  - 2  . 0 3 2 3  - 1  . 9 2 6 9  - 1  . 9 3 7 3  
1 3  0 .  3209 0  . 2 9 0 4  -1 . 8 7 0 0  -1 . 8 7 8 5  - 1  . 8 7 8 5  - 1  . 8 4 5 5  - 1  . 8 5 4 1  - 1  . 8 9 1 4  - 1  . 9084 
1 4  0 .  4 5 4 1  0  . 3 5 0 6  - 2  . 6 6 2 0  - 2  . 6 3 6 0  -2 . 6 3 5 3  - 2  . 5 5 8 8  - 2  . 5 8 1 7  - 2  . 5 3 3 2  - 2  . 5 3 1 0  
1 5  0 .  4 0 3 2  0  . 3 9 7 4  - 2  . 0 1 7 4  - 2  . 1 3 9 3  - 2  . 1 3 6 5  -1 . 9 7 8 8  - 1  . 9 9 0 2  - 2  . 0 4 7 4  - 2  . 0 5 9 6  
1 6  0 .  4 4 4 5  0  . 3 8 3 0  - 2  . 1 8 3 8  - 2  . 1 7 9 5  - 2  . 1 7 9 5  - 2  . 1 1 5 4  - 2  . 1 3 4 3  - 2  . 1 1 5 1  - 2  . 1 2 0 4  
1 7  0  .  4 0 5 6  0  . 2 8 8 3  - 2  . 1 0 3 7  - 2  . 0 1 6 4  - 2  . 0 1 5 9  - 2  . 0 2 0 2  - 2  . 0 5 3 1  - 1  .  9 5 7 3  - 1  . 9 6 6 4  
1 9  0 .  4 4 5 0  0  . 4 1 5 8  - 2  . 0 2 2 7  - 2  . 0 5 3 8  - 2  .0542 -1 . 9 7 6 2  - 1  . 9 9 3 0  - 2  . 0 0 5 0  - 2  . 0 1 4 5  
2 0  -- 3 .  0 8 5 8  - 2  . 9 5 7 1  - 2  . 2 8 9 4  - 2  . 2 8 6 0  - 2  . 2 8 5 1  - 2  . 2 2 5 0  - 2  . 2 2 3 5  - 2  . 2 0 9 9  - 2  .2229 
2 1  0 .  4 6 7 3  0  . 4 0 8 9  - 2  . 2 7 3 8  - 2  . 2 5 8 4  - 2  . 2 5 8 3  - 2  . 2 0 8 5  - 2  . 2 6 0 6  - 2  . 1 9 4 2  - 2  . 2 0 7 7  
22 0 .  4 5 3 5  0  . 3 9 6 1  - 2  . 2 7 2 1  - 2  . 2 5 9 5  - 2  , 2 5 9 6  - 2  . 2 0 8 4  - 2  . 2 5 9 4  - 2  . 1 9 7 0  - 2  . 2 1 0 4  
2 3  0 .  2 5 5 6  0  . 2 5 8 2  - 1  . 6 9 8 2  - 1  . 6 4 2 7  -1 . 6 4 3 4  - 1  . 7 1 7 4  - 1  , 7 1 7 9  - 1  . 7 0 8 8  - 1  . 7 2 3 6  
2 4  0 .  3 1 0 6  0  . 3 2 9 1  - 1  . 4 4 6 4  - 1  . 4 3 7 7  - 1  . 4 3 9 0  - 1  . 4 5 8 1  -1 , 4 5 5 9  - 1  . 4 8 0 0  -1 . 4 9 4 4  
2 5  0 .  4 0 6 3  0  . 4 1 4 7  -1 . 8 6 6 5  -1 . 9 7 1 3  - 1  , 9 7 0 3  - 1  . 8 3 3 6  - 1  . 8 4 5 7  - 1  . 9 0 5 5  -1 . 9 2 1 4  
26 - 1  . 6 5 3  - 1  . 6 4 2 0  - 2  . 0 3 1 8  - 2  . 0 3 1 3  - 2  . 0 3 0 7  - 1  . 9 7 4 1  -1 . 9 7 8 1  - 1  . 9 9 8 2  - 2  . 0 1 3 4  
2 7  0 .  4 0 7 4  0  . 2 9 6 9  - 2  . 0 7 4 5  - 1  . 9 9 5 3  - 1  . 9 9 5 3  - 1  . 9 9 4 5  - 2  . 0 2 7 2  - 1  . 9 3 9 8  - 1  . 9 4 9 7  
33 0 .  2042 0  . 2 0 4 5  -1 . 5 6 5 1  - 1  . 4 9 3 2  - 1  . 4 9 4 1  - 1  . 6 1 0 1  - 1  . 5 9 3 1  - 1  . 5 9 5 3  -1 . 6 1 0 3  
3 4  0 .  3 0 2 1  0  . 2 8 7 1  -1 . 5 4 9 2  - 1  . 5 3 9 2  - 1  . 5 3 9 3  -1 . 5 4 8 7  - 1  . 5 4 8 7  -1 . 5 7 3 8  - 1  , 5 8 6 7  
3 5  0 .  3 2 8 5  0  . 3 0 4 4  - 1  . 6 5 6 9  - 1  . 6 5 9 4  - 1  . 6 5 9 5  - 1  . 6 4 1 7  - 1  . 6 4 9 0  - 1 .  . 6 7 8 9  -1, . 6 9 5 0  
4 9  0 .  0 1 2 8  0  . 0 1 3 3  0  . 1 2 9 8  0  . 1 3 4 3  0  . 1 3 4 4  0  . 1 2 4 2  0  . 1 2 6 7  0  .  1 2 8 0  0 ,  . 1 2 9 2  
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Table 4.3 Stability Limits and Security Domains of Each Parameter 
(Base Case) 

G e n  . N o .  p O  pITl (X*pm aAv/ap A V S  B u s  w O .  

2  1 4  . 8 6 0 0 0  3 0  . 3 3 8 7 4  2 8 .  8 2 1 8 0  - 1  . 7 8 6 3 6  2 ,  . 7 0 9 8 0  1 2  

3  2  . 5 0 0 0 0  2 3  . 4 9 2 4 3  2 2 .  3 1 7 8 1  - 1  . 3 1 7 1 7  1 ,  . 5 4 7 1 8  1 2  

4  0  . 4 7 0 0 0  2 1  . 6 0 8 9 6  2 0 .  5 2 8 5 1  - 1  . 3 0 8 0 4  1 ,  . 4 1 3 2 7  1 2  

5  0  . 7 0 0 0 0  1 6  . 1 3 7 7 8  1 5 .  3 3 0 8 9  - 1  . 7 9 1 1 0  1 ,  . 4 4 5 2 2  1 2  

6  6  . 7 3 0 0 0  1 7  . 6 2 3 1 8  1 6 .  7 4 2 0 2  - 2  . 5 3 8 3 4  2  . 2 3 6 6 8  1 2  

7  0  . 2 2 0 0 0  3 2  . 5 6 4 4 3  3 0 .  9 3 6 2 0  - 0  . 8 5 4 8 8  1  . 3 9 1 9 3  1 2  

8  0  . 6 4 0 0 0  1 4  . 1 8 2 7 3  1 3 .  4 7 3 5 9  - 2  . 0 4 1 7 3  1  . 4 4 7 8 7  1 2  

9  7  . 0 0 0 0 0  2 1  . 7 2 5 7 0  2 0 .  6 3 9 4 2  - 1  . 8 7 7 7 1  2  . 0 3 9 7 3  1 2  

1 0  3  . 0 0 0 0 0  4 6  . 5 3 3 9 7  4 4 .  2 0 7 2 7  - 0  . 6 3 5 1 5  1  . 4 7 7 8 0  1 2  

1 1  1  . 3 1 0 0 0  7 5  . 4 6 2 1 7  7 1 .  6 8 9 0 6  - 0  . 3 7 2 8 9  1  . 4 0 6 9 5  1 2  

1 2  0  . 6 0 0 0 0  1 4  . 1 8 9 2 6  1 3 .  4 7 9 7 9  - 2  . 0 3 4 7 4  1  . 4 4 3 5 7  1 2  

1 3  1  . 4 0 0 0 0  1 6  . 1 8 6 4 2  1 5 .  3 7 7 1 0  . 8 7 0 0 0  1  . 5 1 3 4 3  ]  2  

1 4  4  . 2 6 0 0 0  1 4  . 6 4 7 0 0  1 3 .  9 1 4 6 5  - 2  . 6 6 2 0 4  1  . 9 4 9 5 4  '  9  

1 5  2  . 0 0 0 0 0  1 5  . 7 0 5 8 5  1 4 .  9 2 0 5 6  - 2  . 0 1 7 4 3  1  . 5 8 4 2 7  

1 6  1  . 7 0 0 0 0  1 4  . 3 6 1 4 0  1 3 .  6 4 3 3 3  - 2  . 1 8 3 8 5  1  . 5 6 8 1 6  1 2  

1 7  3  . 1 0 0 0 0  1 6  . 2 4 3 6 7  1 5 .  4 3 1 4 9  - 2  . 1 0 3 7 2  1  . 7 0 8 6 1  

1 9  1  . 3 5 0 0 0  1 5  . 0 1 9 7 4  1 4  .  2 6 8 7 5  - 2  . 0 2 2 7 6  1  . 5 1 9 0 7  1 2  

2 0  2 0  . 0 0 0 0 0  2 0  . 1 4 8 8 6  1 9 .  1 4 1 4 1  - 3  . 0 8 5 8 0  3  . 1 0 8 7 7  

2 1  1 6  . 2 0 0 0 0  28 . 3 6 0 4 7  2 6 .  9 4 2 4 5  - 2  . 2 7 3 8 1  3  . 2 2 4 3 2  1 2  

2 2  1 0  . 8 0 0 0 0  2 2  . 9 6 9 4 6  2 1 .  8 2 0 9 9  - 2  . 2 7 2 1 3  2  . 6 0 9 4 8  1 2  

2 3  8  . 0 0 0 0 0  2 4  . 2 8 1 5 3  2 3 .  0 6 7 4 6  - 1  .69828 2  . 0 6 1 8 4  1 2  

2 4  0  . 5 2 0 0 0  1 9  . 6 3 6 1 8  1 8 .  6 5 4 3 7  - 1  . 4 4 6 4 5  1  . 4 2 0 1 4  1 2  

2 5  7  . 0 0 0 0 0  2 1  . 8 1 3 4 3  2 0 .  7 2 2 7 6  - 1  . 8 6 6 5 9  2  . 0 3 5 8 4  1 2  

26 2 0  . 0 0 0 0 0  20 . 2 7 7 8 5  1 9 .  2 6 3 9 6  - 1  . 6 5 3 2 0  1  . 6 7 6 1 7  •; 

2 7  3  . 0 0 0 0 0  1 6  . 3 2 8 2 2  1 5 .  , 5 1 1 8 1  - 2  . 0 7 4 5 9  1  . 6 9 3 7 2  1  2  

3 3  2 9  . 9 7 0 0 0  4 7  . 6 3 6 5 4  4 5 .  , 2 5 4 7 1  - 1  . 5 6 5 1 4  3  . 7 2 7 8 9  i  2  

3 4  1 0  . 0 9 0 0 0  2 7  . 9 3 7 7 3  2 6 .  , 5 4 0 8 5  - 1  .54925 2  . 1 6 4 1 3  1 2  

3 5  3 0  . 0 5 0 0 0  4 6  . 7 3 7 2 4  4 4  .  , 4 0 0 3 8  - 1  . 6 5 6 9 9  3  . 8 7 2 1 6  1  ?  

* a = 0.95 
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calculating the thresholds of AV and 3AV/ÔP. The last column is the 

corresponding fault locations. 

By carefully analyzing the data of the initial generation Po, the stability 

limits P"»»* and the security domain oP™^ in Table 4.3, it is found that only 

generators 20 and 26 are operating in the vulnerable domain, i.e., 

For the rest of generators their initial values of generation are much smaller 

than their stability limits. 

4.2.2 Thresholds for AV and 9AV/9P 

Our second step is to calculate the thresholds of AV and f)AV/flp using 

equations (3.8) and (3.9). In the last subsection we know that only generators 

20 and 26 are operating in the vulerability domain. Thus in Table 4.3 we check 

the AV^ values in the sixth column and the sensitivity values in the fifth 

column, which correspond to generators 20 and 26. It is found that the largest 

AVs value is 3.1088 and the sensitivity value with smallest magnitude is -

1.65320. Therefore the results are as follows: 

margin threshold sensitivity threshold 

3.10880 -1.65320 

4.2.3 Classification of levels of AV and 3AV/9P 

The third step is using these two thresholds to classify the AV and f)AV/f)P 

into high and low level two categories. As shown in Tables 4.4 and 4.5. 
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Table 4.4 Energy Margin Status for Different Fault Locations 

(Base Case) 

1-high O=low 

F a u l t  B u s  N o .  7  6  1 2  1  2  1 0  2 5  6 1  6 3  

A V  s t a t u s  0 0 1 1 1 1 1 1  1  

Table 4.5 Sensitivity Status of Each Generator Corresponding 

to Different Fault Locations (Base Case) 

l=high O=low 

g e n . \ b u s  7  6  1 2  1  2  1 0  2 5  6 1  6 3  

2  0  0  1  1  1  1  1  1 1 

3  0  0  0  0  0  0  0  0  0  

4  0  0  0  0  0  0  0  0  0  

5  0  0  1  1  1  1  1  1  1 

6  0  0  1  1  1  1  1  1  1  

7  0  0  0  0  0  0  0  0  0  

8  0  0  1  1  1  1  1  1  1 

9  0  0  1  1  1  1  1  1  1  

1 0  0  0  0  0  0  0  0  0  0  

1 1  0  0  0  0  0  0  0  0  0  

1 2  0  0  1  1  1  1  1  1  1  

1 3  0  0  1  1  1  1  1  1  1 

1 4  0  0  1  1  1  1  1  1  1 

1 5  0  0  1  1  1  1  1  1  1  

1 6  0  0  1  1  1  1  1  1  1 

1 7  0  0  1  1  1  1  1 1 1 

1 9  0  0  1  1  1  1 1 1 1 

2 0  1  1  1  1  1  1  1 1 1 

2 1  0  0  1  1  1  1 1 1 1 

2 2  0  0  1  1  1  1  1  1 1 
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Table 4.5 (continued) 

2 3  0  0  1  0  0  1  1  1  1  

2 4  0  0  0  0  0  0  0  0  0  

2 5  0  0  1  1  1  1  1  1  1  

2 6  1  0  1  1  1  1  1  1  1  

2 7  0  0  1  1  1  1  1  1  1  

3 3  0  0  0  0  0  0  0  0  0  

3 4  0  0  0  0  0  0  0  0  0  

3 5  0  0  1  1  1  0  0  1  1  

4 9  0  0  0  0  0  0  0  0  0  

4.2.4 System vulnerability status 

The last step is to evaluate the system vulnerability status based on the 

AV and 9AV/9P levels. Tables 4.4 and 4.5 show that the AV values for faults at 

buses 7 and 6 belong to lower level and the corresponding OAV/DP values of 

generators 20 and 26 belong to high level. Therefore, the final result of the 

system vulnerability assessment is; 

s y s t e m  i s  v u l n e r a b l e  f o r  t h e  f a u l t  a t  f o l l o w i n g  b u s e s  :  

b u s  N o . =  7  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o . :  2 0  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o . :  2 6  

b u s  N o . =  6  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o . :  2 0  

Thus, the system is vulnerable for faults at bus 7, and 6 if the generation 

is increased at either generator 20 or 26. 
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4  ̂ Stressed Case Security and Vulnerability Assessment 

For the stressed case operating condition the AV values corresponding to 

those nine contingencies and the 3AV/3P values of 29 advanced generators arc 

calculated in Table 4.6. 

It is shown in Table 4.6 that for a fault at Bus 6 the energy margin is 

negative, which means that the system is unstable for this contingency; 

therefore we only need to evaluate the system vulnerability status for the rest of 

contingencies. 

Table 4.6 Energy Margin Values (Stressed Case) 

Bus No. 7 6 12 1 2 10 25 61 63 

AV 0.7088 -5.4769 5.166 6.340 6.569 8.921 8.123 13.481 13.822 

The sensitivity values corresponding to these nine contingencies are 

shown in Table 4.7. 

The procedure of system vulnerability assessment is similar to the base 

case operating condition. We first calculate the stability limit and define the 

security domain of the generation for each critical machine. Using the data in 

Tables 4.6 and 4.7 the result of finding the security domain is shown in Table 

4.8. 
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. 5 4 0 2  

. 4 4 4  1  

. 3 6 0 4  

.3611 
, 2 0 1 4  
. 7 7 6 1  
.  9 1 0 3  
, 5 9 8 7  
, 7 3 1 0  
,  6 6 6 9  
3 1 4 1  

,  9 2 9 1  
5 5 5 8  
8 9 9 0  
7 1 9 0  
4 0 3 9  
1210  
2 8 0 4  
5 0 5 1  
3 6 9 9  
3 7 5 3  
8 5 1 3  
9 6 1 6  
7 9 1 1  
1 4 9 4  
1 0 1 1  
5 1 0 3  
9 5 7 4  
2 6 1 9  
1 5 9 1  

Table 4.7 Energy Margin Sensitivity Values (Stressed Case) 

G e n \ :  B u s  7  6  1 2  1  2  1 0  2 5  6 1  

1  - 0  .  1 4 5 1  - 0 .  .  1 4 9 6  - 0  .4924 - 0  .3842 - 0  . 3 8 6 1  - 0  .5445 - 0  .5306 - 0  .5329 
2  - 0  .  6 4 0 4  - 0 ,  ,  6 7 8 8  - 1  . 3 3 1 0  - 1  . 0 3 1 4  - 1  . 0 4 0 8  - 1  . 3 7 5 4  - 1  . 3 6 6 2  - 1  . 4 1 2 7  
3  - 0  . 5 5 1 9  - 0 .  .6266 - 1  .3483 - 1  .  1 3 3 6  - 1  . 1 3 7 1  - 1  .4026 - 1  . 3 8 4 2  - 1  . 3 4 8 3  
4  - 0  .5489 - 0 ,  ,  6 1 6 2  - 1  . 3 3 8 9  - 1  .  1 3 0 7  - 1  .  1 3 4 4  - 1  .3978 - 1  . 3 7 8 6  - 1  . 3 4 8 4  
5  - 0  .  4 3 3 7  - 0 ,  , 4 5 3 6  - 1  . 1 2 8 4  - 0 ,  . 8 5 9 4  - 0  . 8 6 7 5  - 1 ,  ,  1 8 1 5  - 1  .  1 5 9 0  - 1  .  1 7 9 4  
6  - 1  . 3 8 5 3  - 1 .  , 5 0 5 4  - 2  . 7 9 7 8  - 2  . 5 2 0 6  - 2  . 5 2 9 2  - 2  ,  . 8 5 8 9  - 2  . 8 2 8 7  - 2  . 7 5 4 1  
7  - 0  .2986 - 0 .  , 3 1 8 1  - 0  . 8 4 7 4  - 0  ,  .  6 9 8 2  - 0  . 7 0 0 8  - 0 ,  ,  9 1 7 6  - 0  . 8 9 7 1  - 0  . 8 9 9 7  
8  - 0  .  6 8 0 2  - 0 ,  , 7 7 5 9  - 1  . 5 9 4 5  - 1  ,  . 2 7 0 9  - 1  . 2 7 9 3  - 1  ,  . 6 2 9 9  - 1  .  6 3 6 9  - 1  . 5 7 5 5  
9  - 1  . 3 7 7 4  - 1 .  , 4 3 8 6  -2 .  6 5 9 3  - 2  ,  . 7 3 6 3  - 2  . 7 3 3 7  - 2  ,  . 7 4 1 2  - 2  . 7 0 0 3  - 2  . 7 0 2 2  

1 0  - 0  .  1 9 1 4  - 0 .  , 1 9 3 3  - 0  . 6 0 3 2  - 0 ,  .4859 - 0  . 4 8 8 4  - 0 ,  , 6 6 6 6  - 0  . 6 4 9 2  - 0  . 6 5 7 8  
1 1  - 0  . 0 6 0 8  - 0 .  0 6 3 8  - 0  .2515 - 0 ,  . 1 8 5 5  - 0  . 1 9 4 4  - 0 ,  , 3 0 0 0  - 0  . 2 8 5 9  - 0  . 3 0 3 2  
1 2  - 0  . 8 9 6 4  - 1 .  0 1 1 1  - 1  . 9 3 6 1  - 1 .  ,  6 4 1 0  - 1  . 6 4 9 5  - 1 .  ,9751 -1 . 9 7 7 7  - 1  .  9 0 4 6  
1 3  - 0 ,  . 7 1 6 1  - 0 .  7 5 5 6  - 1  . 4 4 2 2  -1, , 1 3 3 1  - 1  . 1 4 2 9  - 1 .  , 4 8 8 8  - 1  . 4 7 7 5  - 1  . 5 2 5 1  
1 4  -1, . 4 9 3 7  - 1 .  6 3 1 0  - 2  .  9 4 3 7  - 2  ,  , 6 5 2 7  - 2  . 6 6 0 7  - 2  .  ,  9 9 6 4  - 2  . 9 6 4 3  - 2  . 8 8 1 3  
1 5  - 1 .  . 3 7 0 2  - 1 .  4 2 9 6  - 2  . 6 4 4 9  - 2 .  , 7 1 4 3  -2 . 7 1 2 1  - 2 .  7 2 6 5  - 2  . 6 8 6 3  - 2  . 6 9 4 0  
1 6  - 1 ,  ,  1 7 6 8  - 1 .  2 8 3 1  - 2  . 3 9 3 1  - 2 ,  1 4 6 9  -2 . 1 5 4 7  - 2  .  4 5 5 4  - 2  . 4 3 0 1  - 2  . 3 8 2 1  
1 7  - 1 .  ,  0 4 0 8  - 1 .  2 0 4 5  - 2  . 1 6 8 5  - 1 .  , 8 2 8 3  - 1  . 8 3 7 0  - 2  .  1 9 1 1  - 2  . 1 8 7 3  - 2  . 0 9 4 2  
1 9  - 1 .  , 0 9 5 9  - 1 .  1 6 9 7  - 2  . 2 2 1 7  - 2  .  0 1 8 2  - 2  . 0 2 6 0  - 2  .  2 9 9 1  - 2  . 2 7 3 5  - 2  . 2 5 5 5  
2 0  - 2  ,  , 4 3 4 4  - 2  .  3 9 8 0  - 2  . 5 0 2 2  - 2  .  2 0 3 0  - 2  . 2 1 1 7  - 2 .  5 5 7 7  - 2  . 5 1 0 5  - 2  . 4 7 4 5  
2 1  - 1 .  1650 - 1 .  2 6 5 7  - 2  . 3 5 1 5  - 2 .  0 7 3 8  - 2  . 0 8 3 3  - 2 .  4 0 9 0  - 2  . 3 9 4 7  - 2  . 3 4 1 0  
2 2  - 1 .  ,  1 7 0 7  - 1 .  2 6 9 6  - 2  . 3 5 2 7  - 2 .  0 7 7 1  - 2  . 0 8 6 4  - 2 .  4 1 0 9  - 2  . 3 9 6 9  - 2 ,  . 3 4 6 1  
2 3  - 0 .  , 2 3 6 4  - 0 .  2 0 8 4  - 0 ,  . 7 4 8 8  - 0 .  5 0 5 2  - 0  . 5 1 2 3  - 0 .  8 0 3 1  - 0  . 7 7 3 0  - 0 ,  .8313 
2 4  - 0 .  , 3 0 5 4  - 0 .  2 4 6 8  - 0 ,  . 8 4 1 7  - 0 .  6 3 9 1  - 0 ,  . 6 4 6 5  - 0 .  9 0 5 3  - 0  .8650 - 0 ,  ,  9 3 9 7  
2 5  - 1 .  4125 -1.  4 6 6 6  - 2  ,  . 7 1 1 5  - 2 .  7 8 2 5  - 2 ,  .7804 - 2 .  7 9 6 2  - 2  . 7 5 5 4  - 2  ,  , 7 6 4 5  
2 6  - 1 .  8 1 8 1  - 1 .  8 3 7 4  - 2  ,  . 1 0 0 9  - 1  .  8 1 5 1  - 1 .  . 8 2 3 6  - 2 .  1 4 6 5  - 2  ,  . 1 1 3 7  - 2  .  ,  1 1 6 2  
2 7  - 1 .  0262 - 1 .  1 8 2 5  - 2  ,  . 1 3 7 9  - 1 .  8 0 6 7  - 1 ,  . 8 1 5 4  - 2 .  1 6 2 9  - 2  ,  , 1 5 9 2  - 2  ,  , 0 7 4 4  
3 3  - 0 .  0 9 9 1  - 0 .  0 9 3 2  - 0 ,  , 4 1 0 8  - 0 .  2 1 1 3  - 0 ,  . 2 1 6 4  - 0 .  4 4 9 5  - 0 ,  , 4 2 9 8  - 0 .  , 4 9 4 3  
3 4  - 0 .  3 2 0 5  - 0 ,  3 3 8 2  - 0 ,  . 8 4 9 9  - 0 .  5 8 4 3  - 0 ,  . 5 9 2 0  - 0 .  8 9 0 3  - 0 ,  , 8 8 1 5  - 0 .  , 9 3 5 4  
3 5  - 0 .  5 1 3 6  - 0 .  5 4 5 3  - 1  ,  , 1 4 9 8  - 0 .  8 6 5 6  - 0 .  . 8 7 4 6  -1. 1 9 2 2  - 1  ,  , 1 8 5 2  -1.  , 2 3 3 2  
4 9  0 .  0 8 8 2  0 .  0 9 1 0  0  ,  . 1 5 5 5  0 .  1 3 9 8  0 ,  ,  1 4 0 4  0  .  1 6 0 2  0 .  ,  1 5 8 1  0 .  1 5 6 6  
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Table 4.8 Stability Limits and Security Domains of Each Parameter 
(Stressed Case) 

G e n  . N o .  pO pIU a* p n i  8 A V / 3 P  A v s  Bus I.'o. 

1  0 .  5 1 0 0 0  5 . 3 9 3 2 2  5 . 1 2 3 5 6  - 0  . 1 4 5 1 5  0  .  0 3 9 1 4  -7 

2  1 4  .  8 6 0 0 0  1 5 . 9 6 6 7 9  1 5 . 1 6 8 4 5  - 0  . 6 4 0 4 1  0 .  5 1 1 2 6  7 

3  2 .  5 0 0 0 0  3 . 7 8 4 1 7  3 . 5 9 4 9 7  - 0  . 5 5 1 9 5  0 .  1 0 4 4 3  7 

4  0 .  4 7 0 0 0  1 . 7 6 1 1 0  1 . 6 7 3 0 4  - 0  . 5 4 8 9 9  0 .  0 4 8 3 4  7 

5  0 .  7 0 0 0 0  2 . 3 3 4 0 8  2 . 2 1 7 3 8  - 0  . 4 3 3 7 6  0  .  0 5 0 6 2  7 

6  6 .  7 3 0 0 0  7 . 2 4 1 6 4  6 . 8 7 9 5 5  - 1  . 3 8 5 3 6  0 .  5 0 1 6 1  7 

7  0 .  2 2 0 0 0  2 . 5 9 3 3 5  2 . 4 6 3 6 8  - 0  . 2 9 8 6 5  0 .  0 3 8 7 3  7 

8  0 .  6 4 0 0 0  1 . 6 8 1 9 2  1 . 5 9 7 8 3  - 0  . 6 8 0 2 8  0 .  0 5 7 2 1  -7 

9  1 3 .  0 0 0 0 0  1 3 . 5 1 4 5 6  1 2 . 8 3 8 8 3  - 1  . 3 7 7 4 8  0 .  9 3 0 8 0  

1 0  3 .  0 0 0 0 0  6 . 7 0 3 2 4  6 . 3 6 8 0 8  - 0  . 1 9 1 4 0  0 .  0 6 4 1 5  

1 1  1 .  3 1 0 0 0  1 2 . 9 5 4 4 9  1 2 . 3 0 6 7 6  - 0  . 0 6 0 8 7  0 .  0 3 9 4 3  

1 2  0 .  6 0 0 0 0  1 . 3 9 0 6 7  1 . 3 2 1 1 4  - 0  . 8 9 6 4 5  0  .  0 6 2 3 3  

1 3  1 .  4 0 0 0 0  2 . 3 8 9 6 8  2 . 2 7 0 2 0  - 0  . 7 1 6 1 9  0 .  0 8 5 5 7  

1 4  4  .  2 6 0 0 0  4 . 7 3 4 5 3  4 . 4 9 7 8 0  - 1  . 4 9 3 7 0  0  .  3 5 3 6 0  

1 5  2 .  0 0 0 0 0  2 . 5 1 7 3 0  2 . 3 9 1 4 3  - 1  . 3 7 0 2 0  0 .  1 7 2 4 6  

1 6  1 .  7 0 0 0 0  2 . 3 0 2 3 1  2 . 1 8 7 2 0  - 1  . 1 7 6 8 0  0 .  1 3 5 4 7  1 

1 7  3 .  1 0 0 0 0  3 . 7 8 1 0 1  3 . 5 9 1 9 6  - 1  . 0 4 0 8 0  0  .  , 1 9 6 7 6  

1 9  1 .  3 5 0 0 0  1 . 9 9 6 7 7  1 . 8 9 6 9 4  - 1  . 0 9 5 9 0  0 .  , 1 0 9 4 1  7 

2 0  2 0 .  0 0 0 0 0  2 0 . 2 9 1 1 6  1 9 . 2 7 6 6 0  - 2  . 4 3 4 4 0  2  .  , 4 6 9 8 4  7 

2 1  1 6 .  2 0 0 0 0  1 6 . 8 0 8 4 1  1 5 . 9 6 7 9 9  - 1  . 1 6 5 0 0  0 .  . 9 7 9 0 9  7 

2 2  1 0 .  8 0 0 0 0  1 1 . 4 0 5 4 5  1 0 . 8 3 5 1 8  - 1  . 1 7 0 7 0  0 .  . 6 6 7 6 2  7 

2 3  8 .  0 0 0 0 0  1 0 . 9 9 7 2 9  1 0 . 4 4 7 4 3  - 0  . 2 3 6 4 8  0 .  . 1 3 0 0 3  7 

2 4  0 .  5 2 0 0 0  2 . 8 4 0 7 4  2 .  6 9 8 7 0  - 0  . 3 0 5 4 2  0 ,  . 0 4 3 3 8  

2 5  1 3 .  , 0 0 0 0 0  1 3 . 5 0 1 8 1  1 2 . 8 2 6 7 1  - 1  . 4 1 2 5 0  0  ,  . 9 5 3 5 7  7 

2 6  2 0 .  . 0 0 0 0 0  2 0 . 3 8 9 8 6  1 9 . 3 7 0 3 7  - 1  . 8 1 8 1 0  1 ,  . 8 5 3 5 4  

2 7  3 .  , 0 0 0 0 0  3 . 6 9 0 7 0  3 . 5 0 6 1 7  - 1  . 0 2 6 2 0  0 ,  . 1 8 9 3 7  7 

3 3  2 9 .  ,  9 7 0 0 0  3 7 . 1 1 8 0 4  3 5 . 2 6 2 1 4  - 0  . 0 9 9 1 6  0 ,  . 1 8 4 0 3  

3 4  1 0 ,  , 0 9 0 0 0  1 2 . 3 0 1 1 3  1 1 . 6 8 6 0 7  - 0  . 3 2 0 5 6  0  . 1 9 7 1 6  7 

3 5  3 0 .  . 0 5 0 0 0  3 1 . 4 2 9 9 8  2 9 . 8 5 8 4 8  - 0  . 5 1 3 6 3  0  . 8 0 7 1 7  7 

* a = 0.95 



www.manaraa.com

46 

By comparing the data in the above table and the data in Table 4.3, which 

is the base case stability limit and security domain values, it is found that the 

big difference is that for the stressed case the stability limit has been 

greatly reduced for almost all the machines. This means that for the stressed 

operating condition many more generators are operated closer to their stability 

limits. We can also find that in the base case only generators 20 and 26 are 

operated in the vulnerable domain while in the stressed case six machines are 

operating in the vulnerable domain. These are machines 9,20,21,25,26, and 35. 

Our second step is to calculate the thresholds of AV and ^AVMP using tlie 

equations (3.8) and (3.9). We know that generators 9,20,21,25,26, and 35 are 

operating in the vulerability domain. Thus in Table 4.8 we check the AV^ 

values in the sixth column and the sensitivity values in the fifth column, 

which correspond to generators 9,20,21,25,26, and 35. It is found that the 

largest AV® value is 2.46984 and the sensitivity value with smallest magnitude 

is -0.51363. Therefore, the results are as follows: 

margin threshold sensitivity threshold 

2.46984 -0.51363 

The next step is using these thresholds to divide the AV and 3AV/f)P i n 

Tables 4.6 and 4.7 into high and low classes. It is shown as follows; 

Table 4.9 Energy Margin Status for Different Fault Locations (Stressed Case i 

l=high 0=low 

F a u l t  B u s  N o .  7  1 2  1  2  1 0  2 5  61 63 

AV status 0 111 1 1 1 1 
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Table 4.10 Sensitivity Status of Each Generator Corresponding 

to Different Fault locations (Stressed Case) 

l=high O=low 

g e n . \ b u s  7  1 2  1  2  1 0  2 5  6 1  6 3  
1  0  0  0  0  1  1  1  1  
2  1  1  1  1  1  1  1  1  
3  1  1  1  1  1  1  1  1  
4  1  1  1  1  1  1  1  1  
5  0  1  1  1  1  1  1  1  
6  1  1  1  1  1  1  1  1  
7  0  1  1  1  1  1  1  1 
8  1  1  1  1  1  1  1  1 
9  1  1  1  1  1  1  1  1  

1 0  0  1  1  1  1  1 
1 1  0  0  0 
1 2  1  1  1  1  1  1  1  1 
1 3  1  1  1  1  1  1  1  1  
1 4  1  1  1  1  1  1  1 1 
1 5  1  1  1  1  1  1  1 1 
1 6  1  1  1  1  1  1  1 1 
1 7  1  1  1  1  1  1  1 1 
1 9  1  1  1  1  1  1  1 1 
2 0  1  1  1  1  1  1  1  1 
2 1  1  1  1  1  1  1  1  1 
2 2  1  1  1  1  1  1 1 
2 3  0  1  1  1  1  1 
2 4  0  1  1  1  1  1  1 1 
2 5  1  1  1  1 1  1  1 1 
2 6  1  1  1  1 1 1 1 1 
2 7  1  1  1  1 1  1  1  1 
3 3  0  0  0  0 0 
3 4  0  1  1  1  1  1  1 1 
3 5  1  1  1  1  1  1  1 1 
4 9  0  0  0  0  0  0  0 0 

The last step is to evaluate the system vulnerability status based on tho 

AV and 9AV/9P levels. Tables 4.9 and 4.10 show that the AV value for fault at 

Bus 7 belongs to lower level and the corresponding 9AV/0P values of generator 

2,3,4,6,8,9,12-17,19-22,25-27,and 35, a total of 20 machines, belong to high level. 

Therefore, the final result of the system vulnerability assessment is as follows. 
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s y s t e m  i s  v u l n e r a b l e  f o r  t h e  f a u l t  a t  f o l l o w i n g  b u s e s  :  

b u s  N o . =  7  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  2  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  3  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  4  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  6  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  8  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  9  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  1 2  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  1 3  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  1 4  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  1 5  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  1 6  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  1 7  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  1 9  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  2 0  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  2 1  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  2 2  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  2 5  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  2 6  

g e n e r a t i o n  i n c r e a s e d  a t  G e n .  N o .  :  2 7  

g e n e r a t i o n  i n c r e a s e d  a t  G e n ,  N o .  :  3 5  

Since the AV value for fault at bus 6 is negative, the system is insecure 

for this contingency. Thus, for the stressed case the system is insecure for a 
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fault at bus 6 and vulnerable for a fault at bus 7 if the generation is increased at 

any of generators nos. 2-4,6,8-9,12-17,19-22,25-27, and 35. 

Comparing the results of system vulnerability assessment for the base 

case and the stressed case operating conditions it is clear that in the stressed 

case there are more machines operated close to their stability limits. From a 

system vulnerability point of view, the system is more vulnerable if there is 

generation shift occurring at any one of many more machines. 

The above analysis shows the application of the framework for system 

security and vulnerability assessment to a test system. For two operating 

conditions of this test system this framework incorporated the information of 

AV and 5AV/9P to evaluate the system vulnerability status. It indicates both the 

system security status at the present operating condition and the trend of this 

status caused by changing the generation. On the basis of this framework the 

artificial neural network is applied to the same test system for the system 

vulnerability classification. This is presented in Chapter 5. 
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5, APPLICATION OF NEURAL NETWORKS IN DYNAMIC 

SECURITY ASSESSMENT 

5.1 Introduction 

Artificial neural networks(ANNs) have been studied for many years in 

order to achieve human-like performance in the fields of speech and image 

recognition. An ANN can be defined as a highly connected array of nonlinear 

computational elements operating in parallel and arranged in patterns 

similar to biological neural nets. In general ANNs consist of three elements: 

(1) an organized topology of interconnected processing elements which 

constitutes the architecture of the neural network, (2) a method of encoding 

information which is basically the training or learning algorithm, and (3) a 

method of recalling information. Among those three components the 

architecture and the training method have significant influence on the 

performance of ANNs. Some basic concepts of ANNs are introduced as follows 

[21]: 

• Processing elements 

Processing elements (PEs), also called nodes or neurons, are the basic-

components of ANNs where most of the computing is done. Figure 5.1 is the 
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Woj 
a 

ai 

Figure 5.1 Processing Element of an ANN 

configuration of a PE. 

Figure 5.1 shows a schematic diagram of the jth PE. Here aj is the it h 

input, and bj is the output. Associated with each connected pair of PEs is an 

adjustable value Wij called a weight. The input ai, weight wjj and the possible 

extra parameter Bj are used to compute the output bj by using the threshold 

function fix). It is operated as 

Where 8j is considered to be an internal threshold value. 

• Threshold functions 

Threshold functions map a PE's input to the output. There are four 

commonly used threshold functions. They are linear, ramp, step and sigmoid 
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functions. Among them the sigmoid function is widely used and its 

expression is 

f(x) = (1 + e-x)"^ 

• Architectures 

ANNs' architectures are formed by connecting the PEs into layers and 

linking them with weighted interconnections. There are a variety of ANNs 

models and among them the six models mentioned in [22] are the most 

commonly used. They are hopfield net, hamming net, Carpenter/Grossberg 

classifier, perceptron, multi-layered perceptron, and Kohonen's self 

organizing feature maps. 

• Learning 

Learning or training is the most important concept of ANNs. It is 

defined to be any change in the value of the weight. There are different kinds 

of learning methods and all of them can be classified into two categories, 

supervised learning and unsupervised learning. Supervised learning is a 

process in which the desired output must be known. Unsupervised learning 

does not require knowledge of the output but relies only upon local information 

and internal control. 

A brief summary of how an ANN works can be stated as follows: 

After choosing an appropriate topology, an appropriate training method 

and appropriate input and output parameters, the ANN is trained by the 
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selected sample data, or examples. If the training is good enough, the ANN 

should have the ability to properly classify data which has not been seen before 

and give the correct output. Thus, an ANN is taught by example, as opposed, 

for example, to an expert system, which is taught by rules. 

The advantages of ANN s are characterized by parallel distributed 

processing, high computation rates, fault tolerance, and adaptive capacity. 

Distributed parallel processing and adaptive capacity make the ANNs very 

attractive. This is because the parallel processing allows the ANNs to deal 

with massive data in a very short period of time and the adaptive capacity 

allows the ANNs to classify complex nonlinear mapping between the input 

and the output. 

Since the neural network computing is still an immature area, till now 

there has been no theoretical method to find the optimal architecture for a 

particular system. It also has some additional disadvantages such as: long 

training time, and sometimes the training procedure may not find the global 

optimal solution. 

In recent years ANNs have been proposed as an alternative method for 

solving certain difficult problems in power systems where the conventional 

techniques have not achieved the desired speed, accuracy or efficiency. These 

ANN applications in power systems can be divided into three areas [23J. 

1. Regression 

• Load forecasting 

• Machine modelling 

• Transient stability 
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• Contingency screening 

• Harmonic evaluation 

2. Combinatorial optimization 

• Topological observability 

• Capacitor control 

3. Classification 

• Harmonic load identification 

• Alarm processing 

• Static security assessment 

From the above introduction we know that ANNs have been proposed for 

solving many power system problems. As for the power system dynamic-

security assessment, using ANN for power system dynamic security and 

vulnerability assessment is still a new research topic. Thus it is an important 

component of this research work. 

The reason of applying ANN technique in dynamic security assessment 

is that it has been successfully used for classification of complex systems 

[24],[25]. We can predict that a TEF-ANN method which could help the on-line 

security and vulnerability assessment would be welcome in a power system 

control center. 
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52 The Neural Netwoit Model 

5.2.1 Layered perceptron 

There are a variety of ANN models, among those models the layered 

perceptron is receiving the most attention as a viable candidate for application 

to power systems. The advantages of layered perceptron are: [21],[23J 

1. It is suited to pattern matching that require a two-class response. 

2. It has the ability to learn significantly nonlinear relationships. 

3. The test results show that it has better performance in terms of 

classification or regression accuracy than other ANN models for the 

application in power systems. 

The following is a basic multi-layered perceptron model: (Figure 5.2) 

À 

output layer 

hidden layer 

input layer 

Figure 5.2 Multi-layered Perceptron 
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Layered perceptron is trained by numerical data. It operates in two 

modes: training and test. In the training mode, a set of representative 

training data is used to adjust the weights of the neural network. Once these 

weights have been determined, the neural network is said to be trained. In the 

test mode, the trained neural network is stimulated by test data. Usually the 

training and test data are different sets. The response of the layered 

perceptron should then be representative of the data by which it was trained. 

5.2.2 Back-propagation algorithm 

There is a variety of training algorithms available for the neural 

networks. The back-propagation algorithm is the most popular one used for 

the layered perceptron. It is a variation of steepest decent method for finding 

the minimum of a function. The basic idea is to use the sensitivity of the error 

with respect to the weight to modify the weight. If the multi-layered 

perceptron has L layers then for a weight wyCO in the Ah layer, r=l,2,...,L, this 

idea can be written as 

3E 
wjjCo 4= w|j(o - n 

awy(o (5.1) 

where "His the step size. If there are M training data pairs then E is the total 

error, that is 

and E"" is the mean square error corresponding to the mth training data pair, 

that is 
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where tfis the desired output and rf is the computed output of the ith node in 

the output layer. 

In its fundamental form, error back propagation modifies the weights in 

the following procedure; the adjustment to the weights is first made for the 

first input-output training data pair. A second step is made in response to the 

second training data pair, etc. In each step, all of the weights in the network 

are adjusted by using equation (5.1). When all of the training data has been 

used, the cycle is again repeated starting from the first training data pair. 

This process is repeated until an acceptably low error results. 

The mathematical model of back-propagation is illustrated on the basis 

of the chain rule of partial derivatives. We can write the derivative term in 

(5.1) as 

aE" ^ aE"" dm wo 
3w|j(0 0Si(O dOi(0 dwijiO (5 2) 

where Si(0 is the output of ith node in Ah layer and Oi(0 is the sum of the inputs 

to the ith node in the Ah layer. That is 

si(0 = flOiiO ) 

and fix) should be the sigmoid function. Define 
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«0 3si(0 

We can show that we can get the following [23] 

^^ = 8i(0[si(0(l- 8i(0)]sja-1) 
(5.3) 

now the unknown value is 5j(0 value. If the layered perceptron has L layers, 

then for É=L we have 

ôi(L) = 
asi(L) 

= rr - tf (5.4) 

It is simply the difference between the desired output and the computed 

output of the neural network. For 1< C< L-1, we have 

N(,i 
5i(0 = X ¥+ IX %(f+lXl- q(f+ l))]wy(/+l) 

i=i (5.5) 

From (5,4) and (5.5) we can see that ôi(L-l) can be evaluated from ôi(L), the 

value of 5i(L-2)can be determined by Si(L-l)and onward, all the way to the 

input. Thus the error at the output is back propagated in order to adjust the 

weights using equation (5,1). 
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5.3 The Selected Neural Netwwk Model 

5.3.1 Layered peroepfron and back-propagation algorithm 

On the basis of the above analysis in section 5.2, the multi-layered 

perceptron was selected as the ANN model for the power system vulnerability 

classification. The back-propagation algorithm was used for training the 

layered perceptron. This layered perceptron has one input layer, one output 

layer and a number of hidden layers. There is only one node or neuron in the 

output layer, since for the system vulnerability classification the neural 

network works as a classifier. It categorizes the output into two categories: 

vulnerable or not vulnerable. The numbers of nodes in the input layer depends 

on how many variables are used as the input values and this will be discussed 

in the following subsection. As for the numbers of hidden layers and the nodes 

in each hidden layer they depend on the studied system condition, the size of 

training set and the nonlinear relation between the inputs and the output data 

of the training set. It has been shown that two hidden layers can classify any 

arbitrary decision region [22]. But we still need to determine the numbers of 

nodes in each hidden layer and this is one of the major tasks in training the 

neural network. 

Until now we have selected the architecture of neural network and the 

training algorithm. The remaining job is choosing the appropriate input 

variables. 
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5.3.2 Input of neural networic 

An appropriate set of input variables should include those parameters 

which have significant impact on the power system vulnerability status. In 

Chapter 3 the AV and 9AV/9P values are used in the new framework for 

evaluating the system vulnerability. Thus the input variables of neural 

network must have a strong relation to AV and 3AV/9P. Based on our study [26] 

the UEP angles 0" are viable candidates to replace 9AV/9P as the input of the 

neural network. (Other candidate input signals to the ANN are sensitivity 

values that can be easily computed, e.g., 98 /3P.) The correlation between 

3AV/9P values and UEP angles can be explained by the UEP angles and 

sensitivity values in the following tables. 

Tables 5.1 and 5.2 are the UEP angle matrix and sensitivity value matrix 

for the stressed case operating condition. Comparing these two matrices we do 

find that the sensitivity value has a strong relation to the UEP angle, especially 

for the advanced machines. For an advanced machine the UEP angle is equal 

to or greater than 90 degrees (1.57 radians). The physical meaning of an 

advanced machine is that this generator is severely disturbed and tends to lose 

the synchronism before other less disturbed generators. Tables 5.1 and 5.2 

show that advanced machines their sensitivity values that are negative and 

have significant magnitudes. Thus, the negative sensitivity values are of 

primary concern. The generation increase at those advanced machines will 

cause the system to have severe stability problems. 

On the basis of the above analysis the UEP angles are used instead of the 

sensitivity coefficients as the input of the neural network. At the same time we 

kept AV as another input of the neural network. The advantage of using UEP 
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Table 5.1 UEP Angles (radian) (Stressed Case) 
station A Generation = 2600 MW 

«.\BU3 7 6 X2 1 2 10 25 61 63 

1 X. 383 X. ,382 X. 83X 1, .751 X. 746 X. 866 X. 860 1. 835 1. 828 
2 X. 9X2 X. .9X2 2. 243 2 .115 2. 120 2. 253 2. 254 2. 246 2. 247 
3 1. 876 X. .875 2. 286 2, .224 2. 223 2. 311 2. 307 2. 288 2. 285 

4 X. 878 X, .877 2. 290 2 .228 2. 227 2. 316 2. 3X2 2. 292 2. 290 
5 1. 787 X, .787 2. 209 2 .099 2. 104 2. 233 2. 2X6 2. 215 2. 216 
6 2. 388 2 .387 2. 759 2 .717 2. 719 2. 776 2. 775 2. 755 2. 755 
7 1. 744 X .744 2. X9X 2 .116 2. 112 2. 223 2. 2X8 2. X95 2. 189 
8 X. 909 X .909 2. 3X5 2 .220 2. 223 2. 335 2. 321 2. 319 2. 320 
9 2. 377 2 .376 2. 762 2 .834 2. 832 2. 766 2. 763 2. 747 2. ,747 

10 X. 554 X .554 2. 007 1 .927 1. 921 2. 042 2. 036 2. 011 2. 004 
XI X. 483 X .482 X. 935 1 .841 1. 825 1. 978 X. 970 X. 939 1. ,923 
X2 2. 055 2 .054 2. 43X 2 .362 2. 365 2. 446 2. 434 2. 430 2. .431 
X3 2. 0X6 2 .0X6 2. 332 2 .2XX 2. 215 2. 341 2. 342 2. 335 2. 336 

X4 2. 478 2 .478 2. 84X 2 .800 2. 802 2. 855 2. 854 2. 836 2. .836 
15 2. 358 2 .358 2. 737 2 .799 2. 798 2. 742 2. 739 2. 724 2. ,725 

X6 2. 2X3 2 .2X2 2. 585 2 .538 2. 540 2. 602 2. 601 2. 584 2. .584 
X7 2. XX5 2 .XX5 2. 476 2 .4X0 2. 413 2. 484 2. 484 2. 473 2. ,474 
X8 0. 920 0 .920 0. 98X 0 .962 0. 963 0. 982 0. 982 0. 918 0. ,918 
X9 2. X48 2 .X48 2. 522 2 .474 2. 476 2. 541 2. 538 2. ,522 2. .522 
20 3. 05X 3 .05X 2. 859 2 .787 2. 790 2. 862 2. 86X 2. ,846 2, ,846 
2X 2. 246 2 .246 2. 610 2 .55X 2. 554 2. 623 2. 613 2. 608 2. ,608 
22 2. 248 2 .248 2. 6X3 2 .553 2. 556 2. 626 2. 615 2. , 611 2. .611 
23 X. 55X X .550 2. 0X5 1 .863 1. 868 2. 045 2. 027 2, .025 2. .027 
24 X. 570 X .569 X. 996 1 .882 1. 886 2. 020 2. 003 2. .003 2, .003 
25 2. 4X0 2 .4X0 2. 787 2 .85X 2. 849 2. 792 2. 789 2. .774 2. ,774 
26 2. 724 2 .723 2. 708 2 .630 2. 633 2. 712 2. 712 2. ,700 2. .700 
27 2. X05 2 .X05 2. 466 2 .400 2. 403 2. 474 2. 474 2. .463 2, .464 
28 -0. 049 -0 .049 -0. 064 —0 .06X -0. 062 -0. 065 -0. 064 -0. .074 -0, .074 
29 0. 098 0 .098 0. XOO 0 .098 0. 098 0. 099 0. 100 0. .077 0, .077 
30 0. 27X 0 .27X 0. 288 0 .282 0. 282 0. ,287 0. 288 0. ,252 0, .252 
3X 0. X52 0 .X52 0. 160 0 .X57 0. 157 0. X59 0. 160 0. .133 0, .133 
32 -0. 5X9 -0 .5X9 -0. 507 -o .502 -0. 502 -0. ,5X0 -0. ,509 -0. ,506 -0, .506 
33 X. 086 X .085 X. 591 1 .39X 1. 397 1. 626 X. ,609 1. ,604 1, .606 
34 X. 487 1 .487 X. 893 1 .727 1. 733 1. 912 X. 908 X. . 901 1, . 902 
35 X. 70X X .700 2. , 055 1 .9X7 1. 922 2. .067 2. ,066 2. ,059 2 .060 
36 -0. 0X3 -0 .0X3 0. 059 0 .042 0. 043 0. ,060 0. ,059 0, ,064 0 .064 
37 -0. 457 -0 .457 -0. 452 -0 .449 -0. 449 —0, .454 -0. ,453 -0. ,452 -0 .452 
38 -0. ,090 -0 .090 -0. ,089 -o .087 -0. 087 -0. .090 -0. ,089 -0. ,090 -0 .090 

39 0. 45X 0 .45X 0. 503 0 .486 0. 486 0. ,505 0. ,504 0, ,501 0 .501 

40 -0. ,X98 -0 .X98 -0. 232 —0 .225 -0. 225 -0. .233 "0. .233 -0. .230 -0 .230 
4X 0. 505 0 .505 0. ,477 0 .483 0. 483 0. .476 0. .477 0. ,479 0 .479 
42 0. 055 0 .055 0. ,019 0 .027 0. 026 0. .018 0. .019 0, .021 0 .021 

43 -X. 662 -X .662 -X. ,762 -1 .74X -1. ,742 -1. .764 -X. .764 -X, .744 — 1 .744 

44 -0. 662 -o .662 -0. ,722 -0 .7X0 -o. 710 -0. .724 -0. ,723 -0. ,715 -0 .715 

45 0. .063 0 .063 0. .053 0 .055 0. ,055 0, ,053 0. .053 0, .049 0 .049 
46 0. ,X88 0 .188 0. ,191 0 .X89 0. ,X89 0. .X90 0. .X90 0, .178 0 . 178 

47 0. ,090 0 .090 0. ,079 0 .082 0. ,082 0. .078 0. .079 0, .078 0 .078 

48 0. ,X03 0 .X03 0. .062 0 .070 0. ,070 0, ,060 0. .06X 0 .064 0 .064 

49 -0. .3X8 -0 .3X8 —0, .365 -0 .356 -0. ,356 -0, ,367 -0. ,366 -0 .361 -0 .361 
50 -0. .060 -0 .060 -0. .084 -0 .079 -0. .079 -0, .085 -0. ,084 -0 .087 —0 .087 



www.manaraa.com

62 

Table 5.2 Energy Mairgin Sensitivity 
Station A Generation = 2600 MW 

GonABus 7 6 12 1 2 10 25 61 6/ 

1 -G.145 -0.149 -G.492 -0.384 0.386 -G.544 -0.53G -G.532 -0.510 
2 -0.64G -G.678 -1.331 -1.031 -1.040 -1.375 -1-366 -1.412 -l.'l'l'l  
3 -0.551 -0.626 -1.348 -1.133 -1.137 -1.402 -1.384 -1.348 -1.360 
4 -0.548 -0.453 -1.128 -0.859 -0.867 -1.181 -1.159 -1.179 -1.201 
5 -0.612 -0.635 -1.823 -1.890 -1.896 -1.923 -1.990 -1.877 -1.888 
6 -1.385 -1.505 -2.797 -2.520 -2.529 -2.858 -2.828 -2.754 -2.7/.,  
7 -0.298 -0.318 -0.847 -0.698 -0.700 -0.917 -G.897 -G.899 -0.910 

8 -0.680 -0.775 -1.594 -1.270 -1.279 -1.629 -1.636 -1.575 -1.598 
9 -1.377 -1.438 -2.659 -2.736 -2.733 -2.741 -2.700 -2.702 - 2 . 73  1 

10 -0.191 -0.193 -0.603 -G.485 -0.488 -0.666 -G.649 -G.657 -O.Gto-, 
11 -0.060 -G.063 -0.251 -G.185 -G.194 -0.300 -0.285 -0.303 -0.31 
12 -0.896 -1.011 -1.936 -1.641 -1.649 -1.975 -1.977 -1.904 -1.92'' 
13 -0.716 -0.755 -1.442 -1.133 -1.142 -1.488 -1.477 -3.S2b -1.55S 
14 -1.493 -1.631 -2.943 -2.652 -2.660 -2.996 -2.964 -2.881 -2.8'-

15 -1.370 -1.429 -2.644 -2.714 -2.712 -2.726 -2.686 -2.694 -2.71" 
16 -1.176 -1.283 -2.393 -2.146 -2.154 -2.455 -2.430 -2.382 -2.40 -
17 -1.040 -1.204 -2.168 -1.828 -1.837 -2.191 -2.187 -2.094 -2.12: 
18 0.225 G.222 0.426 0.391 0.393 0.439 G.430 0.422 0.41», 
19 -1.095 -1.169 -2.221 -2.018 -2.026 -2.299 -2.273 -2.255 -2.280 
20 -2.434 -2.398 -2.502 -2.203 -2.211 -2.557 -2.510 -2.474 -2.50:; 

21 -1.165 -1.265 -2.351 -2.073 -2.083 -2.4G9 -2.394 -2.341 -2.3-. • 
22 -1.170 -1.269 -2.352 -2.077 -2.086 -2.410 -2.396 -2.346 -2.37U 
23 -0.236 -G.208 -0.748 -G.505 -0.512 -0.803 -0.773 -O.B31 -0.81J1 
24 -0.305 -G.246 -G.841 -G.639 -0.646 -0.905 -G.865 -G.939 
25 -1.412 -1.466 -2.711 -2.782 -2.780 -2.796 -2.75b -2.764 -2.7"I 
26 -1.818 -1.837 -2.100 -1.815 -1.823 -2.146 -2.113 -2.116 -2.14-
27 -1.026 -1.182 -2.137 -1.806 -1.815 -2.162 -2.159 -2.074 -2.101 
28 0.133 G.135 0.236 0.214 0.215 0.243 0.240 0.234 0.238 
29 0.186 G.187 0.331 G.382 G.383 G.431 G.424 0.408 0.41" 
30 0.187 G.190 0.340 0.375 0.370 0.407 0.421 0.398 0.3") 
31 G.199 G.200 0.355 0.323 0.324 0.365 G.360 0.346 O.3b2 
32 0.014 G.021 0.024 0.017 0.017 G.027 0.026 0.042 0.042 
33 -0.G99 -0.093 -0.410 -0.211 -0.216 -0.449 -0.429 -0.494 -O.51O 
34 -0.320 -0.338 -0.849 -0.584 -0.592 -0.890 -G.881 -0.935 -O.9b/ 
35 -G.513 -0.545 -1.149 -0.865 -0.874 -1.192 -1.185 -1.233 -1.261 
36 -0.013 -0.004 -0.066 -0.042 -0.045 -G.070 -0.067 -0.043 -0.04b 
37 0.030 0.035 0.052 0.046 0.046 0.058 0.057 0.067 0.0'./  
38 O.G53 0.057 0.G98 G.086 0.086 0.102 O.lOl O.IO/ O. I O /  

39 G.004 0.005 O.Oll G.G18 0.017 O.G18 0.012 O.OlO 0.008 
40 0.085 0.088 0.151 0.135 0.136 0.156 0.154 0.153 0.Ibb 
41 0.126 0.131 0.225 0.203 0.204 0.232 0.228 0.22b 0.22'-
42 0.109 0.113 0.195 G.175 G.176 0.200 0.198 O.19b 0.I"M 
43 -0.021 -G.020 -0.061 -G.054 -0.055 -0.064 -0.063 -O.Obb -O.Ob'. 

44 0.069 O.G71 0.121 0.108 0.109 0.124 0.123 0.122 O . 1 2  1  

45 0.092 G.095 0.167 0.150 0.151 0.173 0.170 0.170 0.172 

46 0.120 0.121 0.222 0.200 0.201 0.229 0.226 0.220 0.22' 

47 0.078 0.082 0.142 0.127 0.127 0.147 0 .14b 0 . 1 4 B  O . I 4 '  

48 0.108 0.112 0.192 0.173 0.173 0.198 0.19b O.193 0.1'"-
49 0.088 0.091 0.155 0.139 0.140 0.160 0.158 O . l b f a  O.1b" 
50 0.106 0.109 0.189 0.170 0.171 0.194 0.192 0.189 O . l " '  
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angles as the input is that when we use the ANN for on-line security and 

vulnerability analysis, the system could consist of hundreds of generators and 

the contingencies of concern may also be a large number. Therefore, we are 

confronted with a lot of data. If the sensitivity 9AV/9P is used as the input of 

neural network we have to calculate the 9AV/3P. Since the calculation of 

9AV/3P is so computationally intensive and time consuming, it may cause the 

on-line vulnerability analysis to be nearly impossible. By using the UEP angles 

as the input to the neural network, we do not need to calculate OAV/OP bui 

depend on an ANN to find the complex relation between inputs and the output. 

Therefore, we can greatly reduce the computation burden by nearly 50Cf, and 

achieve faster on-line performance. 

5.4 Results of Training the ANN 

Using the same test system shown in Chapter 4, the above neural 

network was trained to classify the power system vulnerability status for three 

operating conditions. The first one was the base case operating condition, the 

second one was the stressed case operating condition. As we have mentioned 

in Chapter 4 the base case power flow is characterized by setting the 

generation at power station A to be 1400 MW, while the stressed case power 

flow is characterized by setting the generation at power station to be 2600 MW. 

The generation at station B is held at 4000 MW for both cases. The third one 

was a large operating region, it is obtained by increasing the generation at 

power station A from 1400 MW to 2600 MW. The increment is 200 MW per step. 
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Therefore, we have seven different operating points in this region from 1400 

MW to 2600 MW. 

For the system vulnerability classification the neural network works as 

a classifier. Therefore, the training set includes the following data; 

1. desired output: system vulnerability status 

1 = vulnerable 0 - not vulnerable 

2. inputs: a. AV value 

b. UEP angles 

It should be emphasized that each training pair consists of one desired 

output and the corresponding inputs. The corresponding desired output or the 

vulnerability status for the selected contingency is evaluated by using the 

procedure of system vulnerability assessment proposed in Chapter 3. That is 

for a given contingency we can obtain the corresponding AV and dAW/dP values, 

by using the procedure of system vulnerability assessment proposed in 

Chapter 3 if the system is vulnerable, the desired output for this training stage 

pair will be 1, otherwise the desired output is 0. After the training stage, the 

ANN will classify the system vulnerability status based on this framework for 

system vulnerability assessment. In other words, we let the ANN develop a 

knowledge of system vulnerability classification from this framework through 

these training examples and then use the knowledge to classify the 

vulnerability status of other contingencies it had not seen before. It should be 

remembered, however, that in the training process the ANN accomplishes the 

additional task of finding the complex relationship between the 0" inputs and 

the output results based on 9AV/9P information. 
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Based on these training data, the multi-layered perceptron is trained for 

the system vulnerability classification by using the computer package 

NeuralWorks Professional II [27],[28], 

5.4.1. Base case ANN training 

For the base case condition, the neural network configuration includes 

one input layer, one hidden layer with two nodes and one output layer with 

only one node. For the nodes in input layer there are 28 advanced machines of 

concern. Thus, the inputs of neural network would be 29 UEP angles 

corresponding to these 28 advanced machines and 1 reference machine and 

plus one AV value. Therefore, there is a total of 30 nodes in the input layer. 

Based on the results in Chapter 4 section 2 we know that in this 

operating condition the system is vulnerable for faults at Bus 7, and 6. Thus 

the desired output is 1 for faults at these two buses and 0 for the rest of fault 

buses. There are nine training pairs in the training set since there are nine 

contingencies of concern. 

The training procedure is that the neural network picks up any training 

pair from the training set in a random order to leam. We can choose different 

training times for this training. Training times refer to how many times the 

neural network will pick up a training pair from the training set to learn. 

After training is finished, the same training set is used as the test set and 

input the data to this trained neural network. This is to check the results of 

system vulnerability classification of this layered perceptron for these nine 

contingencies. The results of training for the different training times are ns 

listed in Table 5.3. 
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Table 5.3 Base Case Training Results vs. Training Times 

desired output computed output fault bus No. 

a. training times N=40 

1 . 0  0 . 6 0 4 2 1 4  7  

1 . 0  0 . 6 0 0 5 2 3  6  

0 . 0  0 . 1 0 4 7 4 2  1 2  

0 . 0  0 . 1 0 3 0 4 0  1  

0 . 0  0 . 1 0 3 0 2 0  2  

0 . 0  0 . 1 0 3 0 8 4  1 0  

0 . 0  0 . 1 0 3 2 7 4  2 5  

0 . 0  0 . 1 0 2 6 9 7  6 1  

0 . 0  0 . 1 0 2 6 8 4  6 3  

0 . 0  0 . 1 0 7 0 4 1  3 3  

b. training times N=180 

1 . 0  0 . 8 6 0 5 0 2  7  

1 . 0  0 . 8 5 9 2 4 3  6  

0 . 0  0 . 0 4 6 3 4 1  1 2  

0 . 0  0 . 0 4 6 1 4 7  1  

0 . 0  0 . 0 4 6 1 4 5  2  

0 . 0  0 . 0 4 6 1 5 1  1 0  

0 . 0  0 . 0 4 6 1 6 8  2 5  

0 . 0  0 . 0 4 6 1 2 4  6 1  

0 . 0  0 . 0 4 6 1 2 3  6 3  

0 . 0  0 . 0 4 7 0 5 0  3 3  

c. training times N=400 

1 . 0  0 . 9 4 2 5 2 0  7  

1 . 0  0 . 9 4 0 7 4 5  6  

0 . 0  0 . 0 2 8 8 9 1  1 2  
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Table 5.3 (continued) 

0 . 0  

0 . 0  

0 . 0  

0 . 0  

0 . 0  

0.0 

0 . 0  

0 . 0 2 8 8 1 6  

0 . 0 2 8 8 1 4  

0 . 0 2 8 8 2 9  

0 . 0 2 8 8 3 3  

0 . 0 2 8 7 7 0  

0 . 0 2 8 7 6 5  

0 . 0 2 8 7 1 6  

2 5  

6 3  

3 3  

61 

10 

2 

1 

In Table 5.3 the first column is the desired outputs. They are obtained by 

u s i n g  t h e  p r o c e d u r e  o f  s y s t e m  v u l n e r a b i l i t y  a s s e s s m e n t  p r o p o s e d  i n  C h a p t e r  3 .  

The second column is the actual results of system vulnerability classification 

by the neural network. The third column is the corresponding contingency. 

Therefore the error between the desired output and the computed output will 

tell us the quality of training. If the training is perfect, the actual computed 

output would be either 0.0 or 1.0. However, according to reference [28J, with 

the back-propagation training algorithm, an output less than 0.2 is usually 

considered 0.0. Likewise an output about 0.8 is considered 1.0. The above 

results show that when the training times are 180, the ANN gives the correct 

system vulnerability classification. As we further increase the training times, 

we get even better training results . 

5.4.2 Stressed case ANN training 

For this stressed case, the neural network configuration includes one 

input layer, one hidden layer with two nodes and one output layer with only 

one node. As for the nodes in the input layer, the difference is that in this case 

there are 29 advanced machines of concern. Thus, the inputs of neural 
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network would be 30 UEP angles for these 29 advanced machines and 1 

reference machine and plus one AV value. Therefore, the total nodes in the 

input layer is 31. 

For this operating condition according to the results in Chapter 4 section 

3 we know that the system is unstable for fault at bus 6 and vulnerable for fauh 

at bus 7. Thus the desired output is 1 for faults at these two buses and 0 for the 

rest of fault buses. As with the base case, there are nine training pairs in the 

training set since there are nine contingencies of concern. The result of 

training the ANN is shown as follows and the training times are 180. 

Table 5.4 shows that the ANN correctly classified the system 

vulnerability status for this stressed operating condition. 

Table 5.4 Stressed Case Training Result 

training times N=180 

desired output computed output fault bus No. 

1.0 0.864544 7 

1.0 0.888366 6 

0.0 0.070913 12 

0.0 0.060058 1 

0.0 0.059237 2 

0.0 0.055472 10 

0.0 0.056235 25 

0.0 0.054391 61 

0.0 0.054380 63 
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5.4.3 ANN training for a ]arge operating region 

In this operating region we collect the training data by increasing the 

output of the power station A from 1400 MW to 2600 MW. The increment is 200 

MW per step. Therefore we have seven different operating points within this 

region from 1400 MW to 2600 MW. The selected contingencies are the same as 

those for the base case and the stressed case operating conditions. There are 

nine fault locations. As in Chapter 4, for each operating condition the AV and 

9AV/3P values are calculated for these nine faults. Then the system 

vulnerability status is evaluated for each contingency and each operating 

condition based on the framework proposed in Chapter 3. There are nine 

contingencies and seven operating conditions, thus we have a total of 63 pairs 

of training data. Table 5.5 is the system vulnerability status matrix, which is 

the desired output of ANN, for these nine contingencies with different 

operating conditions within this operating region. The values were obtained by 

using the procedure of system vulnerability assessment developed in Chapter 

3. 

Table 5.5 System Vulnerability Status Matrix 

Pm\Bu3 No. 7 6 12 1 2 10 25 61 6 3 

1400 mw 1 1 0 0 0 0 0 0 0 

1600 mw 0 1 0 0 0 0 0 0 0 

1800 mw 0 1 0 0 0 0 0 0 0 

2000 mw 0 1 0 0 0 0 0 0 0 

2200 mw 0 1 0 0 0 0 0 0 0 

2400 mw 1 1 0 0 0 0 0 0 0 

2600 mw 1 1 0 0 0 0 0 0 0 

1= VULNERABLE 0= NOT VULNERABLE 
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In Table 5.5 the first column is the total generation at power station A, 

and the rest of columns are the system vulnerability status or the desired 

output of ANN for the corresponding contingency under various operating 

conditions. 

It is generally recognized that if the size of training set is getting larger 

then the configuration of neural network will be more complicated. This 

means that there will be more hidden layers and more nodes in each hidden 

layer. It has been mentioned at the beginning of this chapter that there is no 

theoretical method to find the optimal architecture for a particular system. Wo 

therefore find the best configuration by trial and error. For this operating 

region afi^r several tests the selected neural network configuration includes 

one input layer, two hidden layers with six nodes in the first hidden layer and 

two nodes in the second hidden layer, and one output layer with only one node. 

For this test, the same set of data is used for training and for testing the ANN 

network. The number of training times N=1000. The results are shown in 

Table 5.6. 

Table 5.6 Training Results for a Large Operation Region 

Training Times N=1000 

Generation Desired output Computed output Fault bus No. 

1400 MW 1.0 

1.0 

0.0 

0.0 

0.0 

0.0 

0.773662 
0.874138 
0.010753 
0.010753 
0.010753 
0.010753 

7  

6 

12 

10 
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Table 5.6 (continued) 

1600 MW 

1800 MW 

2000 MW 

0.0 0.010753 25 

0.0 0.010753 61 

0.0 0.010753 63 

0.0 0.032605 7 
1.0 0.874137 6 
0.0 0.010753 12 
0.0 0.010753 1 
0.0 0.010753 2 
0.0 0.010753 10 
0.0 0.010753 25 

0.0 0.010753 61 
0.0 0.010753 63 

0.0 0.023989 7  

1.0 0.874091 6 
0.0 0.010753 12 

0.0 0.010753 1 
0.0 0.010753 2 
0.0 0.010753 10 

0.0 0.010753 25 

0.0 0.010753 61 
0.0 0.010753 63 

0.0 0.024542 7 

1.0 0.874131 6 
0.0 0.010753 12 

0.0 0.010753 1 
0.0 0.010753 2 

0.0 0.010753 10 

0.0 0.010753 25 
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Table 5.6 (continued) 
0.0 0.010753 61 

0.0 0.010753 63 

2200 MW 0.0 0.090642 7 

1.0 0.874138 6 

0.0 0.010835 12 

0.0 0.010754 1 

0.0 0.010754 2 

0.0 0.010753 10 

0.0 0.010754 25 

0.0 0.010753 61 

0.0 0.010753 63 

2400 MW 1.0 0.868662 7 

1.0 0.874138 6 

0.0 0.023517 12 

0.0 0.017382 1 

0.0 0.015791 2 

0.0 0.010863 10 

0.0 0.011434 25 

0.0 0.010753 61 

0.0 0.010753 63 

2600 MW 1.0 0.874094 7 

1.0 0.874138 6 

0.0 0.031959 12 

0.0 0.024061 1 

0.0 0.023949 2 

0.0 0.023558 10 

0.0 0.023773 25 

0.0 0.010773 61 

0.0 0.010762 63 
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It is to be noted that in the training of the neural network an output less 

than 0.2 is usually considered 0.0. Likewise an output about 0.8 is considered 

1.0. Thus, the above results show that the only error is for fault at Bus 7 when 

the generation at power station A is 1400 MW, in which the computed output is 

0.773662. It is slightly away from the required value 0.8 indicating that the 

classification lies close to the border between two classes. However, the overall 

training is successful. 

We now increase the training times by making the training times 

N=12000. A sample of the ANN results for four operating conditions and nine 

fault locations are shown in Table 5.7. The results for the remaining operating 

conditions are similar to those shown in Table 5.6. 

The results in Tables 5.7 show that the ANN can give the correct 

classification for the training data when the training times is large enough. 

Table 5,7 Training Result for a Large Operating Region 
Training Times N=12000 

Generation Desired output Computed output Fault bus No. 

1400 MW 1.0 

1.0 

0.0 

0.0 

0.0 

0.0 

0.0 
0.0 

0.0 

0.859290 

0.987397 

0.020224 

0.020224 

0.020224 

0.020224 

0.020224 
0.020224 
0.020224 

7 
6 

12 

1 

2 

10 

25 
61 

63 

1800 MW 0.0 

1.0 

0.020224 
0.986061 

7 

6 



www.manaraa.com

74 

Table 5.7 (continued) 

0.0 0.020224 12 
0.0 0.020224 1 

0.0 0.020224 2 

0.0 0.020224 10 
0.0 0.020224 25 

0.0 0.020224 61 

0.0 0.020224 63 

2200 MW 0.0 0.028948 7 

1.0 0.987397 6 
0.0 0.020224 12 
0.0 0.020224 1 

0.0 0.020224 2 

0.0 0.020224 10 

0.0 0.020224 25 

0.0 0.020224 61 
0.0 0.020224 63 

2600 MW 1.0 0.986034 7 

1.0 0.987397 6 

0.0 0.020255 12 
0.0 0.020224 1 
0.0 0.020224 2 
0.0 0.020224 10 

0.0 0.020224 25 

0.0 0.020224 61 
0.0 0.020224 63 
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5.4.4 ANN training by using different training and test data 

In section 5.4.3 the 63 data pairs are used to train the ANN as well as to 

test it, i.e., it is also used as the inputs to check the ANN outputs. By 

comparing the ANN outputs with the desired outputs shown in Table 5.7 we 

get a completely correct system vulnerability classification. 

It should be kept in mind that usually the training and test data are 

different sets. If the training is good enough, the ANN should have the ability 

to properly classify the test data which has not been seen before and give the 

correct outputs. 

On the basis of above analysis, the above 63 training data pairs are 

divided into two sets. 

a, training set; 

It includes the data corresponding to the operating points (generation at 

power station A) 

1400 MW 

1600 MW 

2000 MW 

2200 MW 

2600 MW 

This data represents five operating conditions and nine contingencies. 

Thus there are total of 45 training data pairs. 

b. test set: 

It includes the data corresponding to the operating points 

1800 MW 
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2400 MW 

Thus there are 18 test data pairs. 

The above two sets of data are used to train and test the ANN. Two cases 

are considered. 

Case 1 Same data is used to train the ANN and as the inputs to check the 

training. The result is shown in Table 5.8. 

Noting that in the training of the neural network an output of less than 

0.2 is considered 0.0, and output equal to or greater than 0.8 is considered 1.0, 

the results in Table 5.8 show that the ANN output correctly predicts the system 

vulnerability for those 45 cases. 

Case 2 After using the training set to train the ANN, the test set was 

used as the input to check if proper classification is obtained. The 

result is shown in Table 5.9. 

The results in Tables 5.9 show that the ANN can give the correct 

classification for the test data which has not been seen before. 

The above training and testing results indicate that the training of the 

neural network has been successful for a variety of operating conditions and 

disturbances for the IEEE 50-generator test system. We can conclude, 

therefore, that the multi-layered perceptron can successfully classify system 

vulnerability. As we have mentioned at the beginning of this chapter, the 

ANNs have advantages such as parallel distributed processing, high 

computation rates, fault tolerance, and adaptive capacity. Thus, it could be a 

potential tool for on-line power system dynamic security assessment 

application. 
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Table 5.8 Training Result for a Large Operating Region 

(recall the training set) 

Training Times N=12000 

Generation Desired output Computed output Fault bus No. 

1400 MW 1.0 0.977602 7 
1.0 0.985038 6 
0.0 0.003377 12 
0.0 0.003377 1 

0.0 0.003377 2 
0.0 0.003377 10 
0.0 0.003377 25 

0.0 0.003377 61 

0.0 0.003377 63 

1600 MW 0.0 0.007784 7 
1.0 0.985038 6 
0.0 0.003377 12 
0.0 0.003377 1 
0.0 0.003377 2 

0.0 0.003377 10 

0.0 0.003377 25 

0.0 0.003377 61 
0.0 0.003377 63 

2000 MW 0.0 0.006081 7 
1.0 0.985038 6 
0.0 0.003377 12 

0.0 0.003377 1 
0.0 0.003377 2 

0.0 0.003377 10 

0.0 0.003377 25 



www.manaraa.com

78 

Table 5.8 (continued) 

0.0 0.003377 61 

0.0 0.003377 63 

2200 MW 0.0 0.011101 7 
1.0 0.985038 6 

0.0 0.003388 12 
0.0 0.003377 1 

0.0 0.003377 2 

0.0 0.003377 10 

0.0 0.003377 25 
0.0 0.003377 61 

0.0 0.003377 63 

2600 MW 1.0 0.985037 7 

1,0 0.985038 6 
0.0 0.006941 12 

0.0 0.005901 1 
0.0 0.005876 2 
0.0 0.005812 10 
0.0 0.005839 25 

0.0 0.003378 61 
0.0 0.003377 63 
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Table 5.9 Training Result for a Large Operating Region 
(recall the test set) 

Training Times N=120Q0 

Generation Desired output Computed output Fault bus No. 

1800 MW 0.0 0.005920 7 

1.0 0.985037 6 
0.0 0.003377 12 
0.0 0.003377 1 
0.0 0.003377 2 
0.0 0.003377 10 

0.0 0.003377 25 
0.0 0.003377 61 

0.0 0.003377 63 

2400 MW 1.0 0.984615 7 

1.0 0.985038 6 
0.0 0.005805 12 
0.0 0.004968 1 
0.0 0.004797 2 
0.0 0.003394 10 
0.0 0.003623 25 

0.0 0.003377 61 
0.0 0.003377 63 
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6. CONCLUSIONS 

In this dissertation the need for a new framework for assessment of 

power system dynamic security, which includes the trend of security status, is 

discussed. Therefore, the system vulnerabihty is introduced as a new concept 

for assessing the system dynamic security. The transient energy function 

method of transient stability assessment is used as the tool of analysis to 

implement this new framework for system dynamic security and vulnerability 

assessment. 

The major contributions of this research work can be summarized as 

follows: 

1. A new framework for power system security and vulnerability 

assessment was developed based on the TEF method. The new 

framework indicates both the present security level using the energy 

margin AV, and the trend of security status due to the possible variation 

of a system operating parameter p using the energy margin sensitivity 

dàV/dp. Therefore, this framework can identify weak points in the 

system, and how the changes of the parameter may cause the system to 

become vulnerable to contingencies. 
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2. Within this framework, the concept of system vulnerability is addressed. 

The indices of vulnerability are determined by establishing the 

thresholds for acceptable levels of AV and dAV/dp ; and relating these 

thresholds to stability limits of critical system parameters. 

3. The procedure for system security and vulnerability assessment was 

implemented for changes in plant generation P. This procedure is 

simple and can be easily adopted for on-line system vulnerability 

assessment. 

4. The artificial neural networks technique was used for power system 

security and vulnerability classification. A multi-layered perceptron 

model was selected and the back-propagation algorithm was used for 

training the neural network. 

5. The correlation between the energy margin sensitivity with respect to 

the plant generation and the UEP angles were investigated and the UEP 

angles were used instead of the energy margin sensitivity values as the 

input to the ANN to achieve fast on-line performance. 

6. The procedure for vulnerability assessment was demonstrated by a 

validation study on the IEEE 50-generator system. Data for an 

unstressed system condition as well as a stressed system condition (AV 

and 9AV/3P) were given. The corresponding generation limits were 

computed and the acceptable thresholds for the security indicator S w 
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and its sensitivity indicator SAV/AP were presented. System vulnerability 

was assessed for these operating conditions. 

7. The artificial neural network model was applied to this IEEE 50-

generator system. It gives correct system vulnerability classification for 

a variety of operating conditions and disturbances including previously 

unseen data. We can conclude, therefore, that the multi-layered 

perceptron can successfully classify system vulnerability and could be a 

potential tool for on-line system dynamic security assessment 

application. 

The suggestions for the future work are as following: 

1. From dynamic security point of view, there are several critical 

parameters which may be of concern such as plant generation, system 

configuration, transmission interface power flow, etc.. In this research 

work we considered only the variation of plant generation to build our 

security and vulnerability framework. Therefore, the next step would be 

to extend the same idea to cover the effect of other parameters, as well as 

the combination of parameters, on system dynamic security. 

2. When this new framework for power system security and vulnerability 

assessment is applied, and if the system is vulnerable for some given 

contingencies, the system operators need to know what kinds of control 

action should be applied in order to relieve a potentially vulnerable 
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situation. Thus, investigation of the necessary control actions for the 

vulnerable system condition would also be an important research topic. 
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